Introduction
The CV8000 nuclear translocation analysis software enables the analysis of changes in the localization of signal molecules that transfer between cytoplasm and nuclei, such as proteins. The following is an example of the translocation analysis of NFκB, a transcription factor.
NFκB plays a key role in immune reactions and is attracting attention as a target of anticancer drugs and anti-inflammatory drugs. Under normal conditions, NFκB is coupled with the inhibitor IκB and localized in the cytoplasm.
However, IκB decomposes when signals are transmitted from receptors existing on the cellular membrane surface due to stimulation by cytokine, etc. Then, the NFκB nuclear localization signal is exposed, and NFκB transfers to the nucleus. The transferred NFκB facilitates the transcription of genes that are involved in the inflammatory response.
Analysis Results
Fig.1: Images captured using the CV8000 and recognition results (blue: nucleus (Hoechst33342), green: NFκB (Alexa Fluor488)) |
Images were captured using the CV8000 and changes in NFκB localization were analyzed by means of the nuclear translocation analysis software (Fig. 1). As a result, it was possible to quantify the NFκB transfer from the cytoplasm to the nuclei depending on the IL-1β and TNFα concentration and create dose-response curves based on the changes in the mean fluorescence intensity of NFκB in the nuclei and cytoplasm (Fig. 2). The analysis software also allows for the output of numerical data for the fluorescence intensity and area of individual cells. Based on these data, graphs were created using Spotfire® (Fig. 3, 4). In this way, the nuclear translocation analysis software enables detailed analysis of the behaviors of various proteins such as transcription factors and nuclear receptors.
NFκB transfer into the nuclei can be observed in the wells with IL-1β (100ng/ml) or TNFα (100ng/ml) added. In the recognition images, nuclei regions were identified and colored blue, and the regions extending 3μm out from the nuclei boundaries were designated as cytoplasm.
Experiment
- HeLa cells were cultured in 96-well plates at the ratio of 10,000 cells/well for 24 hours.
- TNFα and IL-1β were added. (Final concentration: 0~100 ng/ml, reaction time: 20 minutes)
- The cells were fixed with formaldehyde, and the NFκB was stained using immunostaining, with the nuclei stained using Hoechst33342.
- Images were captured using the CV8000 under the following conditions:
• Magnification: 20x
• Images captured per well: 9 Fields
• Exposure time: Alexa Fluor 488 (488nm): 500msec, Hoechst33342 (405nm): 500msec - The captured images were analyzed using the nuclear translocation analysis software.
• Nuclei regions were identified from the nuclei images.
• Cytoplasm regions were identified from the NFκB images. (Regions extending 3μm out from the nuclei boundaries were identified as cytoplasm regions.)
• NFκB brightnesses in the nuclei regions and cytoplasm regions were obtained, and the nuclei/ cytoplasm mean intensity was calculated.
Fig. 2: Dose-response curves of the ratio of NFκB mean fluorescence intensity in nuclei to that in the cytoplasm | Fig. 3(a): Scatter diagram of fluorescence intensity of individual cells | Fig. 3(b): Histogram of the ratio of NFκB mean fluorescence intensity in nuclei to that in the cytoplasm(nuclei/cytoplasm) of individual cells, at each reagent dosage. |
Fig. 4(a): Ratio of cells whose mean NFκB fluorescence intensity ratio (nuclei/cytoplasm) is 2 or higher at each IL-1β concentration (Orange)
Fig. 4(b): Ratio of cells whose mean NFκB fluorescence intensity ratio (nuclei/cytoplasm) is 1.2 or higher at each TNFα concentration (Orange)
Spotfire® is a registered trademark of TIBCO Software Inc.
相關產品&解決方案
-
CellVoyager高內涵分析系統CQ3000
CQ3000可以根據應用組合選項,在培養細胞的同時快速獲取高分辨率的3D圖像。
-
CQ1台式高內涵分析系統
CellVoyager CQ1採用節省空間的台式設計,提供高質量的共聚焦圖像和延長的活細胞成像。
-
CV8000 High-Throughput System 高內涵影像分析系統
CellVoyager CV8000 是一款高階的高內涵分析系統,使用橫河特有的高速共軛焦掃描儀。具備水鏡、多達四個高視野相機、細胞培養環境的載物台和自動化分液器的組合,不僅實現高內涵、高解析,也可以使用更複雜的評估系統進行表型篩選。
-
High Content Analysis CellVoyager
我們的高內涵分析 (HCA) 系統使用功能強大的軟體,支援從基礎科學到復雜化合物篩選的廣泛研究應用。
-
Life Science
Yokogawa 的螢光顯微影像系統和生命科學解決方案支援從基礎研究、研發藥物到臨床前試驗的應用。
Yokogawa的高內涵影像篩選系統和雙轉盤式共軛焦技術應用於再生醫學、研發藥物和精密醫學,實現高速、高辨識度的活細胞成像。