Introduction
Cell number is one of the most basic and significant metrics for evaluating effects of chemicals on cultured cells. Analyzing factors related to cell number, such as change of cell cycle pattern and apoptosis frequency as well as molecular events, are useful ways to understand the mode of action of chemicals. The combination of fluorescently labeling individual phenotype markers and analyzing with the CQ1’s multicolor image acquisition feature enables the collection of multiple streams of quantitative information simultaneously.
Below we describe a basic example of multi-parameter analysis using HeLa cells treated with an anti-cancer therapeutic agent, VX-680 (Tozasertib).
Figure 1. Molecular mode of action of VX-680 and its effect on HeLa cells.
a) Schematic representation of molecular mechanism of VX-680;
b) Dose-response curve of VX-680 vs Cell Count. Error bar: SEM (n=3).
c) Multi-color cell images of negative control (upper) and VX-680 treated (lower) wells. Red: Phosphorylated histone H3Ser10 immunostain; Green: caspase-3 active form immunostain; Blue: Druq7 nuclear stain (pseudo color).
Experimental procedure
•HeLa cells were seeded in a 96-well microplate at a density of 2X 104 cells/well.
•Serial dilutions of VX-680 were added to the culture (Fig 2) and incubated for 24 h followed by fixation with formaldehyde solution.
•Phosphorylated histone H3Ser10 (G2/M progression marker) and active form caspase-3 (apoptosis marker) were fluorescently visualized by double-immunostaining. Cell nuclei were stained with Draq7.
•Cell images were captured using the CQ1 with a 4X objective lens and fluorescent excitation by 488/561/640 nm lasers.
•Acquired digital images were analyzed by the CQ1 software and obtained numerical data were further processed with the FCS Express™ 5 Image Cytometry (De Novo Software, optional) and statistical software.
Figure 2. Plate layout for the VX-680 dose-response experiment.
Results and discussions
HeLa cells were treated with VX-680 in an increasing dose-dependent manner and multiple parameters related to cell number were analyzed using the CQ1.
•Cell cycle histograms show 4N cell accumulation indicating cell cycle arrest at G2/M-phase (Fig 3a upper and Fig c).
•Scattergram analysis of immunostaining intensities of individual cells show an apparent reduction of H3Ser10 phosphorylation even at low chemical doses (Fig 3a middle and Fig b).
•Active form caspase-3 intensities of immunostained cells indicated an increase in apoptosis level (Fig 3a lower and Fig d).
•A comparison of these three parameters indicate that the reduction of phosphorylated H3Ser10 started at a low concentration of the chemical. This result implies suppression of Aurora kinasis an early event that triggers cell cycle arrest leading to apoptosis.
•In total, these sequential phenomena lead to the reduction of HeLa cell number by VX-680.
Figure 3 Analysis of three parameters of VX-680 treated HeLa cells.
(a) Numerical data of cell measurement was exported from the CQ1, then cell population data was further analyzed by three parameters: DNA content (upper panels), DNA content and phospho-histone H3Ser10 immunostain intensity (middle panels) or DNA content and active caspase-3 immunostaining intensity (lower panels).
(b-d) Dose-response curves of phospho-histone H3Ser10 of G2/M gated cell population (b), average DNA content (c) and active caspase-3 from whole cell population (d). Error bar: SEM (n=3).
Our Social Medias
We post our information to the following SNSs. Please follow us.
Follow us | Share our application | |
@Yokogawa_LS | Share on Twitter | |
Yokogawa Life Science | Share on Facebook | |
Yokogawa Life Science | Share on LinkedIn |
Yokogawa's Official Social Media Account List
相關產品&解決方案
-
CellPathfinder高內涵影像分析系統專用軟體
CellPathfinder 是專為Yokogawa HCA 系統、CQ1 和 CellVoyager 系列而設計的軟體。 從初學者到專家,都可讓您量化細微的生理變化,使用各種圖形選項量化無標籤樣本。
-
CellVoyager高內涵分析系統CQ3000
CQ3000可以根據應用組合選項,在培養細胞的同時快速獲取高分辨率的3D圖像。
-
CQ1台式高內涵分析系統
CellVoyager CQ1採用節省空間的台式設計,提供高質量的共聚焦圖像和延長的活細胞成像。
-
CV8000 High-Throughput System 高內涵影像分析系統
CellVoyager CV8000 是一款高階的高內涵分析系統,使用橫河特有的高速共軛焦掃描儀。具備水鏡、多達四個高視野相機、細胞培養環境的載物台和自動化分液器的組合,不僅實現高內涵、高解析,也可以使用更複雜的評估系統進行表型篩選。
-
High Content Analysis CellVoyager
我們的高內涵分析 (HCA) 系統使用功能強大的軟體,支援從基礎科學到復雜化合物篩選的廣泛研究應用。
-
Life Science
Yokogawa 的螢光顯微影像系統和生命科學解決方案支援從基礎研究、研發藥物到臨床前試驗的應用。
Yokogawa的高內涵影像篩選系統和雙轉盤式共軛焦技術應用於再生醫學、研發藥物和精密醫學,實現高速、高辨識度的活細胞成像。