Introduction
There are a number of apoptosis analysis methods that use imaging. When focusing on nuclei, such phenomena as chromatin aggregation, nuclei condensation and DNA cutting,etc. are observed along with the progress of apoptosis, which are recognizable from microscopic images. The following is an example of the analysis of nuclear transformation by using the images acquired by CV7000 and 「Nuclear Morphology」function of the analysis software.
Analysis Results
Images were acquired using multiple object lenses and analyzed by the analysis software. As a result, changes in the nuclear areas due to apoptosis were observed with any of the objective lenses(Fig. 1). In the created doseresponse curves of three factors (Fig. 2), both the 4X and 40X lenses gave almost the same results. In addition, bar charts of individual cell distribution in the wells with staurosporine concentrations of 0μM and 10μM (Fig. 3) and pie charts (Fig. 4) were created using Spotfire®, both of which clearly indicated apoptosis. In this way, the 「Nuclear Morphology」function of the analysis software enables multilateral analysis of changes in nuclear morphology, and stable analysis of images acquired by as low as 4X magnification object lenses, too.
Fig. 1: Images captured by CV7000, and their recognition results
Based on the nuclear area per cell, live cells and cells with apoptosis are recognized and colored in green and red, respectively.
It is clearly shown that almost all nuclei are fragmented due to apoptosis in the wells with 10μM staurosporine.
Experiments
- HeLa cells were cultured in 96-well plates with 10,000 cells/well for 24 hours.
- Add Staurosporine, fix with formaldehyde four hours later, and stain nuclei with Hoechst33342.
- CV7000 observation conditions are shown below: (wavelength: 405nm)
Magnification Exposure time (405nm) Number of images (per well) Number of recognized cells (well average) 4x 500 msec 1 3,452 cells 10x 250 msec 4 3,028 cells 20x 250 msec 9 1,243 cells 40x 250 msec 16 493 cells -
Analyze captured images using the 「Nuclear Morphology」function of the analysis software in its advanced mode.
• Extract nuclear areas from the images to recognize the nuclei with less than 100μm2 area as micronuclei fragmented due to apoptosis.
• Calculate the area and average fluorescence intensity of the nuclei and fragmented micronuclei, respectively, as well as the number of micronuclei.
Fig. 2: Staurosporine dose-response curves: Imaged with (a)4x or (b)40x lens
Fig.3 Cell number distribution graphs (40X)
Fig. 4 (a): Pie-chart : Ratio of cells at various staurosporine concentrations. (Magnification: 40x)
The ratio of cells with nuclear fluorescence intensity of 800 or more are colored in green.
Fig. 4 (b): Pie-chart: Ratios of cells at various staurosporine concentrations. (Magnification: 40x)
The ration of cells with one or more fragmented nuclear granules are colored in green.
Our Social Medias
We post our information to the following SNSs. Please follow us.
Follow us | Share our application | |
@Yokogawa_LS | Share on Twitter | |
Yokogawa Life Science | Share on Facebook | |
Yokogawa Life Science | Share on LinkedIn |
Yokogawa's Official Social Media Account List
相關產品&解決方案
-
CellPathfinder高內涵影像分析系統專用軟體
CellPathfinder 是專為Yokogawa HCA 系統、CQ1 和 CellVoyager 系列而設計的軟體。 從初學者到專家,都可讓您量化細微的生理變化,使用各種圖形選項量化無標籤樣本。
-
CellVoyager高內涵分析系統CQ3000
CQ3000可以根據應用組合選項,在培養細胞的同時快速獲取高分辨率的3D圖像。
-
CQ1台式高內涵分析系統
CellVoyager CQ1採用節省空間的台式設計,提供高質量的共聚焦圖像和延長的活細胞成像。
-
CV8000 High-Throughput System 高內涵影像分析系統
CellVoyager CV8000 是一款高階的高內涵分析系統,使用橫河特有的高速共軛焦掃描儀。具備水鏡、多達四個高視野相機、細胞培養環境的載物台和自動化分液器的組合,不僅實現高內涵、高解析,也可以使用更複雜的評估系統進行表型篩選。
-
High Content Analysis CellVoyager
我們的高內涵分析 (HCA) 系統使用功能強大的軟體,支援從基礎科學到復雜化合物篩選的廣泛研究應用。
-
Life Science
Yokogawa 的螢光顯微影像系統和生命科學解決方案支援從基礎研究、研發藥物到臨床前試驗的應用。
Yokogawa的高內涵影像篩選系統和雙轉盤式共軛焦技術應用於再生醫學、研發藥物和精密醫學,實現高速、高辨識度的活細胞成像。