Visualizing the complex spatiotemporal dynamics of human stem cells as they proliferate and make cell fate decisions is key to improve our understanding of how to robustly engineer differentiated tissues for therapeutic applications.
In this webinar, Dr. Rafael Carazo Salas will describe multicolor, multiday high-content microscopy pipelines that his group has recently developed to visualize the dynamical cell fate changes of human Pluripotent Stem Cells (hPSCs). In particular, he will describe the integrated experimental and computational approaches that his group has established, including novel “live” reporters of cell fate and multi-reporter hPSC lines generated by CRISPR/Cas9 allowing multiplexed monitoring of cell proliferation and fate dynamics, and exemplify the biological discoveries they are enabling.
Key Topics Include:
- Visualizing how human Pluripotent Stem Cells (hPSCs) proliferate and undergo early differentiation in vitro, by high content microscopy
- Learning about experimental and computational pipelines that enable monitoring single-cell fate dynamics
- Learning about novel “live” reporters of hPSC cell fate
Related Products & Solutions
-
Benchtop CQ1 Confocal System
The CellVoyager CQ1 provides the highest quality confocal images and extended live-cell imaging in a space-saving benchtop design.
-
CV8000 High-Throughput System
CellVoyager CV8000 is the most advanced high-content screening system. The improved built-in incubator lets you analyze extended live cell responses. With its expandability, 4 cameras, 5 lasers and an optional built-in pipettor, the system permits increasingly complex assay development and high-content screening.
-
Life Science
Yokogawa’s sensitivity and precision solutions enable rapid and accurate measurements, empowering groundbreaking research, accelerating drug discovery, and optimizing bio-production at scale.