EJX910 Multivariable Transmitter

Descargas (186 KB)

ITOU Akio1 MIMURA Shin-ichi1 KOYAMA Etsutarou1 ODOHIRA Tetsu1 NIKKUNI Masaaki1 MIYAUCHI Tatsuhiko2

We have developed the EJX910 multivariable transmitter, an all-in-one instrument that integrates the functions of a differential pressure transmitter, a pressure gauge, a thermometer and a flow computer, while featuring high performance and space-saving design. The transmitter employs a unique flow rate calculation method, achieving a mass flow calculation cycle of 100 milliseconds. By adopting a Reynolds number compensation algorithm, etc., all flow calculation parameters were optimized and a mass flow accuracy rate as high as 1% was achieved. Furthermore, EJX910 complies with a wide range of primary devices, including orifices, nozzles and venturi tubes, and various types of fluid, including general fluids, steam tables, and natural gas. Application information, such as the primary devices and fluid data required for mass flow calculation, is input using the EJXMVTool, a mass flow parameter configuration tool that runs on a PC and is downloaded to the transmitter by means of field communication. A field test performed on a British natural gas test line showed an excellent mass flow measurement accuracy of 1%.

  1. Industrial Automation Products Business Division
  2. Global Service Headquarters

Introduction

 Figure-1-External-View-of-EJX910
Figure 1 External View
of EJX910

When evaluating mass flow rates using a primary device such as an orifice or nozzle in a differential pressure flow meter in order to make fluid density compensations, the upstream pressure (static pressure) and fluid temperature are measured in addition to the output of a regular differential pressure transmitter. In the past in such cases, a differential pressure transmitter, a pressure transmitter, a temperature converter and a flow computer were all separately required. The DPharp EJX series of differential pressure transmitters developed by Yokogawa in 2004, can simultaneously measure both differential pressure and static pressure using an advanced form of silicon resonant sensors that comprise the multi-sensing function. Recently, we have developed the EJX910 multivariable transmitter as a new model that incorporates this series' functions to full advantage. The EJX910 integrates the functions of a differential pressure gauge, a pressure gauge, a thermometer, and a flow computer into a single instrument, thereby achieving high space efficiency and multifunctionality.

A Reynolds number compensation algorithm and other means have been adopted for the mass flow rate calculation of this transmitter to optimize all flow rate calculation parameters and achieve high-precision mass flow rate measurement. In this paper, we will focus on the functions related to mass flow rate calculation, one of the features a multivariable transmitter has to offer. Figure 1 shows an external view of the EJX910.

Product Features

The EJX910 multivariable transmitter serves as a differential pressure gauge, a pressure gauge, and a thermometer (with an external temperature sensor). In addition to this multifunctionality, the fluid density compensation function provided by the transmitter itself and the PC-installed EJXMVTool's mass flow parameter configuration tool enable high-speed, high-precision mass flow rate measurement. The EJX910 supports a number of flow rate standards and a variety of fluid types as target applications. Moreover, the EJX910 can be applied to integrated flow rate measurement and various diagnoses that use many process variables (differential pressure, static pressure, temperature, etc.).

Mass Flow Rate Calculation

Figure-2-Example-of-Mass-Flow-Rate-Measurement Figure-3-Mass-Flow-Rate-Measurement-System-Configuration
Figure 2 Example of Mass Flow Rate
Measurement Using Orifice
Figure 3 Mass Flow Rate Measurement
System Configuration

Figure 2 shows an example of measuring mass flow rates from orifices and temperature sensors installed in a process. The EJX910 measures the difference between the upstream and downstream pressures of the orifice placed in the process, the upstream static pressure and the fluid temperature. Then the transmitter calculates the mass flow rate from these measured values.

Figure 3 shows a configuration of a mass flow rate measurement system. Application information necessary for flow rate calculations (primary device and fluid information) is input using the EJXMVTool mass flow parameter configuration tool running on a PC. This information is then converted into parameters that can be perceived by the transmitter and downloaded to the transmitter by means of field communication.

Figure 4 shows a block diagram of a mass flow rate measurement system comprising the EJX910 and EJXMVTool. Differential pressure, static pressure and temperature measured by the EJX910 can be directly output as process variables. The system performs fluid density compensation calculations according to the following equation to determine the mass flow rate.

equation

Figure-4-Mass-Flow-Rate-Measurement-Block-Diagram
Figure 4 Mass Flow Rate Measurement Block Diagram

where:

Qm: Mass flow rate
C: Discharge coefficient
β: Beta ratio (d/D)
d: Bore of primary device
D: Pipe inner diameter
ε: Gas expansion factor
∆P: Differential pressure
ρ1: Fluid density

For this purpose the system employs a unique method of calculation that minimizes the transmitter's calculation load, and achieves a flow rate calculation cycle of 100 milliseconds. In a simplified method of flow rate calculation, the parameters in Equation (1) are treated as fixed values, resulting in large mass flow rate calculation errors as shown in Figure 5. The EJX910 performs optimized calculations in real time using dynamically changing parameters, thereby realizing a high flow rate accuracy of 1%. More specifically, Reynolds number corrections are made to the discharge coefficient (C) according to changing measured values. The gas expansion correction factor (ε) is corrected against the effects of adiabatic expansion of gases. In addition, the fluid density (ρ1) is corrected for static pressure and temperature variations.

Supported Applications

Figure-5-Comparison-of-Mass-Flow-Rate-Errors 
Figure 5 Comparison of Mass Flow Rate Errors between
Fixed-parameter Calculation and Optimized Calculation

The primary devices that the multivariable transmitter is compatible with, i.e., orifices, nozzles and venturi tubes, comply with a number of flow rate standards. In addition, a fixed mode is available to set desired values to the discharge coefficient and the gas expansion correction factor. The transmitter can handle a wide variety of fluid types as described below:

  1. General fluids (gases and liquids)
    The transmitter supports 12 types of general fluids and employs the DIPPR® physical property database widely used around the world.
  2. Steam tables
    The transmitter supports IAPWS-IF97 Water and Steam (1997), the standard for steam tables used in each country (e.g., JSME and ASME).
  3. Natural gases
    The transmitter complies with the following typical natural gas calculation standards:
    AGA8 Detail Characterization Method
    Gross Characterization Method 1
    Gross Characterization Method 2
    ISO 12213: 1997
    First edition (Dec. 1, 1997)
    Part 2: molar-composition analysis
    Part 3: physical properties
  4. Custom fluids
    User-maintained physical property values can be incorporated in the transmitter.

Structure of EJXMVTool Mass Flow Parameter Configuration Tool

Figure-6-Structure-of-EJXMVTool-Software 
Figure 6 Structure of EJXMVTool Software

Figure 6 shows the structure of the EJXMVTool mass flow parameter configuration tool used to set mass flow rate application information.

  1. Flow rate parameter configuration function
    This function comprises interactive graphic screens used to configure the flow rate calculation parameters shown in Equation (1), including application information such as primary devices and fluid types. Parameters can be configured easily as this function automatically converts the parameters to the transmitter's format.
  2. Flow rate parameter management function
    This function saves flow rate parameters to a file, uploads and downloads these files to and from the transmitter, obtains results of parameter calculation by the transmitter, and outputs reports.
  3. General-purpose parameter management function
    This function sets general-purpose parameters such as ranges and units.
  4. Physical property database
    The software contains a database of physical properties necessary to calculate fluid density and viscosity.
  5. Field communications server
    For easy compliance with various methods of field communication, the software incorporates the same field communications server used in the PRM (Plant Resource Manager) field device management package.

Flow of Application Information Setting

Figure-7-Settings-of-Primary-Device-Information Figure-8-Settings-of-Fluid-Density-and-Viscosity
Figure 7 Settings of Primary Device Information Figure 8 Settings of Fluid Density and Viscosity

As explained below, the operating screens of EJXMVTool have been designed in association with specific applications.

  1. Screen for setting primary device information
    As shown in Figure 7, this screen is used to set the diameter of an orifice or other primary device, the pipe diameter and the materials.
  2. Figure-9-Verification-of-Results-of-Flow-Rate 
    Figure 9 Verification of Results of
    Flow Rate Parameter Calculations
    Screen for selecting fluid type
    This screen is used to select the fluid type to be measured.
  3. Screen for setting natural gas composition information
    This screen is used to set the composition information of a natural gas.
  4. Screen for specifying fluid pressure and temperature range
    This screen is used to specify fluid pressure and temperature range, which are necessary to calculate density or other data items.
  5. Screen for setting fluid density and viscosity
    As shown in Figure 8, this screen is used to verify data to set fluid density and viscosity. This screen can be customized.
  6. Screen for downloading application information
    This screen is used to convert user-input primary device information and fluid information into a transmitter-specific format and then download that information to the transmitter.
  7. Screen for simulated flow rate calculations
    This screen is used to verify the results of simulating mass flow calculations by the transmitter with the sensor inputs in Figure 9 applied as simulated inputs, in order to predetermine the results of applying the downloaded information.
  8. Screen for verifying flow rate calculations in an actual plant
    This screen is used to verify the results of flow rate calculation under actual plant operation with the respective sensor inputs in Figure 9 actually applied.

Field Test Results

Figure-10-Results-of-an-Actual-Natural-Gas-Flow-Test

Figure 10 Results of an Actual Natural Gas Flow Test

Figure 10 shows the results of an actual flow test performed on a British natural gas test line. The test results show a mass flow rate measurement accuracy level as excellent as 1%. Users have also highly evaluated the EJX910 in other actual flow tests.

Conclusion

In future we intend to further accumulate experience in mass flow rate measurement using multivariable transmitters, while broadening the range of applications to encompass an even greater variety of primary devices and fluids. In addition to mass flow rate measurement, we will further develop fluid level measurement and multivariable measurement-based process diagnosis.

References

  1. ISHIKAWA Tamaki, et al., "New DPharp EJX Series of Pressure and Differential Pressure Transmitters," Yokogawa Technical Report, No. 37, 2004, pp. 9-14
  2. KUROMORI Ken-ichi, "Industrial Flow Meters—Recent Topics—." Measurement & Control, Vol. 42, No. 12, 2003, pp. 1015-1020 (in Japanese)
  • 'DPharp', 'EJXMVTool' and 'PRM' are registered trademarks of Yokogawa Electric Corporation. All other product names, including software names, appearing in this document are the trademarks or registered trademarks of their respective companies or groups.

Industrias

  • Agua y agua residual

    Yokogawa ha estado suministrando soluciones de control para la producción hídrica sostenible desarrollando tecnología con mayor eficiencia energética, ayudando a reducir la huella de carbono de las operaciones y fabricando productos de gran solidez que protegen el ambiente contra los contaminantes. Con nuestra tecnología de vanguardia y amplios conocimientos de las aplicaciones, trabajamos con usted para proveer soluciones hídricas sostenibles que impulsen su negocio y agreguen alto valor a lo largo del ciclo de vida de la planta. Nuestra tecnología y nuestros productos mejoran el desempeño de las plantas y garantiza que puedan operar competitivamente en los mercados del agua de hoy, así como reducir sus costos operativos. Yokogawa brinda apoyo en una amplia gama de aplicaciones para el control del agua en los mercados del agua tanto públicos como privados.

    Leer Más
  • Bocas de pozo y separación

    La boca de pozo proporciona la interfaz estructural y la presión que contiene para el equipo de perforación y producción. El control de la presión superficial es proporcionado por un ensamble de válvulas con medidores y obturadores (árbol de Navidad), que se instala en la parte superior de la boca de pozo. Las válvulas de aislamiento y los equipos de obstrucción controlan físicamente el flujo de los fluidos del pozo cuando el pozo está en producción. Varios paquetes de automatización se añaden al monitor local o remoto, controlan y optimizan la producción de cada pozo o almohadilla de múltiples pocillos. Los separadores de campos petroleros emplean un recipiente a presión para separar así los fluidos producidos en los pozos de petróleo y gas en componentes gaseosos y líquidos que se transfieren a continuación a las tuberías o almacenamiento localizados en función de la infraestructura de las zonas.

    Leer Más
  • En cubierta

    Al igual que su equivalente en tierra, el procesamiento y manejo en cubierta en las plataformas de producción preparan hidrocarburos extraídos para transportación. Yokogawa ofrece soluciones de control integrado y de monitoreo que maximizan la productividad y la disponibilidad de las operaciones en cubierta.

    Leer Más
  • Energía

    A mediados de la década de 1970, Yokogawa inició su participación en el negocio de la energía con el lanzamiento del Sistema de control eléctrico EBS. Desde entonces, Yokogawa ha continuado firmemente con el desarrollo de nuestras tecnologías y capacidades para proveer los mejores servicios y soluciones a nuestros clientes en todo el mundo.

    Yokogawa ha operado la red de soluciones de energía globales para jugar un papel más activo en el dinámico mercado de energía global. Esto ha hecho un posible un trabajo en equipo más unido dentro de Yokogawa, el cual conjunta nuestros recursos globales y nuestra especialización en la industria. Los expertos en el sector de energía de Yokogawa trabajan juntos para brindar a cada cliente la solución que se adapta mejor a sus requerimientos sofisticados.

    Leer Más
  • Petroquímica y a granel

    Las empresas productoras de petroquímicos, productos inorgánicos o productos intermedios se encuentran bajo una presión constante para equilibrar los costos y los márgenes al suministrar productos a sus clientes de manera oportuna y eficiente, manteniendo al mismo tiempo operaciones seguras y conformes con la normativa. Además, las empresas químicas tienen que adaptarse a la constante fluctuación de los precios de los insumos y la energía y tener la capacidad de proveer al mercado la combinación de productos más rentable.

    Yokogawa ha estado supliendo las necesidades de automatización del mercado de productos químicos a granel globalmente y ha obtenido reconocimiento como líder en este mercado. Con productos, soluciones y especialización en la industria, Yokogawa entiende su mercado y las necesidades de producción y trabajará con usted para proporcionarle una solución confiable y rentable durante el ciclo de vida de su planta.

    Leer Más
  • Procesamiento y fraccionamiento

    El procesamiento de gas natural está diseñado para controlar el punto de condensación del flujo de gas natural y separar los líquidos de gas natural para la venta y distribución. La eliminación de petróleo y condensados, la eliminación de agua, la separación de líquidos de gas natural y la eliminación de azufre y dióxido de carbono son procesos que se emplean para separar las impurezas en el alimentador que proviene de los yacimientos aguas arriba. En el proceso de fraccionamiento se extraen los efluentes líquidos de la planta de procesamiento de gas, que pueden estar compuestos de metano, propano, butano y pentano, para ser tratados en columnas de fraccionamiento separadas, y posteriormente pueden pasar a una planta de tratamiento de impurezas antes de ser vendidos como componentes separados.

    Leer Más
  • Producción flotante, almacenamiento y descarga (FPSO)

    La unidad de Producción flotante, almacenamiento y descarga (FPSO) es una planta de producción flotante en altamar que almacena tanto el equipo de procesamiento como los hidrocarburos producidos. Las unidades de Producción flotante, almacenamiento y descarga (FPSO) son utilizadas por las compañías petroleras para lograr que sea económicamente viable producir petróleo en zonas remotas y en aguas más profundas.

    Leer Más
  • Refinación, procesamiento y almacenamiento de petróleo y gas

    Gracias a sus innovadoras plataformas tecnológicas y su ejecución líder en la industria, Yokogawa tiene buena reputación en el mercado global como socio en soluciones pionero en la integración de tecnologías para todos los aspectos del ecosistema de petróleo y gas, desde el yacimiento hasta la empresa. Soluciones comprobadas que incluyen modelado de negocio predictivo, optimización de plantas y plataformas de automatización altamente confiables están apoyando a los operadores de refinación, procesamiento y almacenamiento a dirigir sus negocios con niveles de eficiencia óptimos. Yokogawa está ayudando a sus clientes a desarrollar sus estrategias de automatización, para garantizar años de utilización de activos altamente eficaz y sostenibilidad.

    Leer Más
  • Terrestre

    La industria de exploración, desarrollo y producción terrestre se enfrenta a exigencias cada vez más altas y mayores desafíos con entornos cada vez más difíciles y hostiles en las que debe funcionar.

    A medida que las oportunidades de los recursos de gas natural no convencionales, en particular el gas de esquisto, están creciendo en América del Norte, la solución total de Yokogawa juega un papel importante al ayudar a los clientes a satisfacer los desafíos de reducir tanto el CAPEX como el OPEX, mientras que las tecnologías integradas mejoradas aumentan la producción. Nuestra experiencia global y local constituye la base de nuestras soluciones totales únicas para satisfacer las necesidades de esta industria. Con expertos en exploración, desarrollo y producción terrestre que trabajan en oficinas por todo el mundo, ofrecemos un soporte rápido y extenso para satisfacer las demandas de nuestros clientes.

    Leer Más

Productos y Soluciones Relacionadas

  • EJX910A

    Este transmisor mide con precisión la presión diferencial, la presión estática, y la temperatura del proceso; además utiliza estos valores en un ordenador de flujo de alto desempeño para ofrecer Flujo Másico que está compensado.

    Leer Más
  • Transmisores de Presión

    El proceso de medición preciso y estable de los transmisores de Presión de Yokogawa son la base de la operación rentable, segura y confiable de su planta.

    Leer Más

Top