List of Selected Publications : CQ1

다운로드 (129 KB)

[1] D. W. Cleveland et al., “TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC,” Nat. Commun., vol. 9, no. 1, p. 4354, 2018.

[2] F. Gasset-Rosa et al., “Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death,” Neuron, Mar. 2019.

[3] T. Hoshiba et al., “Maintenance of Cartilaginous Gene Expression of Serially Subcultured Chondrocytes on Poly(2-Methoxyethyl Acrylate) Analogous Polymers,” Macromol. Biosci., vol. 17, no. 12, p. 1700297, Jun. 2017.

[4] J. Hwang et al., “Synthesis and Characterization of Functional Nanofilm-Coated Live Immune Cells,” ACS Appl. Mater. Interfaces, vol. 10, no. 21, pp. 17685–17692, 2018.

[5] V. G. Kartzev et al., “Discovery and optimization of cardenolides inhibiting HSF1 activation in human colon HCT-116 cancer cells,” Oncotarget, vol. 9, no. 43, 2018.

[6] D. H. Kim et al., “The AAA+ ATPase TRIP13 remodels HORMA domains through N‐terminal engagement and unfolding,” EMBO J., vol. 36, no. 16, pp. 2419–2434, 2017.

[7] S. W. Kim et al., “Mutual Destruction of Deep Lung Tumor Tissues by Nanodrug-Conjugated Stealth Mesenchymal Stem Cells,” Adv. Sci., vol. 5, no. 5, p. 1700860, Jun. 2018.

[8] T. Kimura et al., “Lipophagy maintains energy homeostasis in the kidney proximal tubule during prolonged starvation,” Autophagy , vol. 13, no. 10, pp. 1629–1647, 2017.

[9] H. Komura et al., “Alzheimer Aβ Assemblies Accumulate in Excitatory Neurons upon Proteasome Inhibition and Kill Nearby NAKα3 Neurons by Secretion,” iScience, 2019.

[10] Y. S. Lee and H. S. Jun, “Glucagon-like peptide-1 receptor agonist and glucagon increase glucose-stimulated insulin secretion in beta cells via distinct adenylyl cyclases,” Int. J. Med. Sci., vol. 15, no. 6, pp. 603–609, 2018.

[11] F. Louis, S. Kitano, J. F. Mano, and M. Matsusaki, “3D collagen microfibers stimulate the functionality of preadipocytes and maintain the phenotype of mature adipocytes for long term cultures,” Acta Biomater., vol. 84, pp. 194–207, Jan. 2019.

[12] F. Meitinger et al., “53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration,” J. Cell Biol., vol. 214, no. 2, pp. 155–166, 2016.

[13] M. H. Mosa et al., “Dynamic Formation of Microvillus Inclusions During Enterocyte Differentiation in Munc18-2–Deficient Intestinal Organoids,” Cmgh, vol. 6, no. 4, pp. 477-493.e1, Aug. 2018.

[14] K. Nanki et al., “Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis,” Cell, vol. 174, no. 4, pp. 856-869.e17, Aug. 2018.

[15] S. Santaguida et al., “Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System,” Dev. Cell, vol. 41, no. 6, pp. 638-651.e5, 2017.

[16] H. Seo et al., “A β1-tubulin–based megakaryocyte maturation reporter system identifies novel drugs that promote platelet production,” Blood Adv., vol. 2, no. 17, pp. 2262–2272, Sep. 2018.

[17] Y. Shimada et al., “FF-10502, an Antimetabolite with Novel Activity on Dormant Cells, Is Superior to Gemcitabine for Targeting Pancreatic Cancer Cells,” J. Pharmacol. Exp. Ther., vol. 366, no. 1, pp. 125–135, 2018.

[18] N. Sunamura, S. Iwashita, K. Enomoto, T. Kadoshima, and F. Isono, “Loss of the fragile X mental retardation protein causes aberrant differentiation in human neural progenitor cells,” Sci. Rep., vol. 8, no. 1, p. 11585, Dec. 2018.

[19] M. Tanaka et al., “Adhesion-based simple capture and recovery of circulating tumor cells using a blood-compatible and thermo-responsive polymer-coated substrate,” RSC Adv., vol. 6, no. 92, pp. 89103–89112, 2016.

[20] C. Zhang et al., “Mimicking Pathogenic Invasion with the Complexes of Au22(SG)18-Engineered Assemblies and Folic Acid,” ACS Nano, vol. 12, no. 5, pp. 4408–4418, 2018.

Link to article search site


Our Social Medias

We post our information to the following SNSs. Please follow us.

  Follow us Share our application
•Twitter @Yokogawa_LS Share on Twitter
•Facebook Yokogawa Life Science Share on Facebook
•LinkedIn Yokogawa Life Science Share on LinkedIn

Yokogawa's Official Social Media Account List

Social Media Account List


Related Products & Solutions

  • High Content Analysis CellVoyager

    HCA(High-Content Analysis) 시스템은 당사의 강력한 소프트웨어와 함께 활용되어 기초 과학에서부터 복잡한 화합물 스크리닝에 이르기까지 광범위한 연구 응용 분야에서 활용됩니다. 

    See More
  • Life Science

    Unlocking Life with Precision

    Yokogawa는 단순히 측정하는 것을 넘어, 극한의 정밀도를 자랑하는 측정을 통해 연구의 질을 높입니다. 이는 마치 현미경으로 미세한 세포를 관찰하듯, 연구 대상을 더욱 정밀하게 분석하고 이해하는 데 도움을 줍니다. 새로운 약물 후보 물질의 효과를 정확하게 평가하고 부작용을 최소화하는 데 기여합니다. 생산 과정에서 발생할 수 있는 미세한 변화를 빠르게 감지하여 품질을 유지하고 생산성을 향상시킵니다.

    See More

Top