Micronucleus Test

다운로드 (712 KB)

Introduction

Micronucleus test is carried out to evaluate the genotoxicity of chemical substances. Micronucleus is a smaller nucleus which are left in the cytoplasm without being taken into the main nucleus when cell division occurs due to abnormality in the chromosomes. In this test, micronucleus is counted after cells are exposed to the chemicals examined. CQ1 users can take high quality confocal images and set analysis protocols to automate the detection and counting of the micronucleus and main nucleus. In this application note, we examined the genotoxic effects of mitomycin C (MMC), which is commonly used as a positive control in micronucleus test. An important requirement in this test is the division of nucleus during and/or after exposure to the test substances. In the present experiment, we treated the cells with cytochalasin D, an inhibitor of actin polymerization, so that we distinguished multinucleated cells, in which the nucleus had divided at least once, from mononucleated cells, in which the nucleus had not divided after exposure to MMC. Then we counted cells having micronucleus, mononucleus and multinucleus.

Figure 1. Detection of micronucleus in CQ1

Figure 1. Detection of micronucleus in CQ1
(A and B) Examples of cells without (A) and with (B) MMC treatment. Cell (left, CellMaskTM Deep Red), nuclei (middle, Hoechst 33342) and the recognition by CQ1 (right). Main nuclei (blue dots),  cell bodies (red outlines) and micronuclei (green dots) are recognized. Only bi-nucleated cells were analyzed in this figure.
(C) A micronucleus (arrow in left and orange dot in right) which is not completely separated from the main nucle
 

Figure 2. Frequency of the cells with micronucleus among multinucleated cells.

Figure 2. Frequency of the cells with micronucleus among multinucleated cells.
MMC induces micronucleus in dose-dependent manner.



Calcium Signals in iPSC-derived Myocardial Cells

Figure 3. Detection of multinucleated cells.
(A) Examples of cells (green outlines) having 1 to 4 nuclei (red dots) recognized by CQ1. (B) Number of cells with 1 to 4 nuclei. Colors indicate the number of nuclei. (C) Ratio of multinucleated cells against mononucleatedcells.

Experimental procedures

Experimental procedures
  • CHO-K1 cells were seeded in a 96-well plate (NUNC #165305, 3,000 cells/well) and incubated for a day.
  • Cells were incubated for another 24 hr in the presence of MMC.
  • Cells were treated with 6µM cytochalasin D for 24 hr.
  • Cells were fixed with formaldehyde, then the nuclei were labeled with Hoechst 33342 and plasma membrane was stained with CellMaskTM Deep Red.
  • Images were acquired by CQ1 (20x objective lens, z slice: 1µm x 31).

 

Results and Discussion

We could detect not only micronuclei isolated in the cytoplasm but also those not completely separated from the main nuclei in the image so that we were able to quantify the increase of the frequency of the cells with micronucleus precisely. In micronucleus test, it must be ensured that the nucleus has divided during and/or after the exposure to the substances examined. For this purpose, we used cytochalasin D to prevent the division of cytoplasm, and counted the number of main nucleus in individual cells to distinguish multinucleated cells and mononucleated cells. The number of mono and multinucleated cells is necessary also to estimate cytotoxic side effects. In the present experiment, high dose of MMC not only induced micronucleus but also prevented cell division.
The present results demonstrate that users can collect data necessary for micronucleus test by confocal imaging and image analysis in CQ1. CQ1’s flexible analysis function enables users to analyze with multiple measures such as the number of micronucleus and main nucleus, volume and length as needed. Therefore, CQ1 would be a powerful research tool not only for micronucleus test but also for the basic research of cell division mechanism.

Mitomycin C (MMC)
MMC has genotoxicity including cutting DNA and induces micronucleus.

Cytochalasin D
An inhibitor of actin polymerization. Cytochalasin D prevents the division of cytoplasm, but does not of nucleus, so that it induces multinucleated cells.

 


Our Social Medias

We post our information to the following SNSs. Please follow us.

  Follow us Share our application
•Twitter @Yokogawa_LS Share on Twitter
•Facebook Yokogawa Life Science Share on Facebook
•LinkedIn Yokogawa Life Science Share on LinkedIn

 

Yokogawa's Official Social Media Account List

Social Media Account List


Related Products & Solutions

  • CellPathfinder

    CellPathfinder는 HCA 시스템, CQ1 및 CellVoyager 시리즈용으로 설계되었습니다. 초보자부터 전문가까지 YOKOGAWA의 분석 소프트웨어를 사용함으로써 미묘한 생리학적 변화를 정량화 할 수 있으며 다양한 그래프 옵션을 사용하여 label-free 샘플까지도 정량화 할 수 있게 해 줍니다.

    See More
  • CV8000 High-Throughput System

    CellVoyager CV8000은 가장 진보된 최첨단 high-content screening 시스템입니다. 향상된 내장 인큐베이터를 통해 extended live cell 반응을 분석할 수 있습니다. 이 system의 확장성과 함께 4대의 카메라, 5개의 레이저 및 옵션 사양인 내장 피펫팅 기능을 갖춘 이 시스템은 점점 더 복잡한 검사 및 분석의 발전과 high-content screening을 가능하게 합니다.

    See More
  • High Content Analysis CellVoyager

    HCA(High-Content Analysis) 시스템은 당사의 강력한 소프트웨어와 함께 활용되어 기초 과학에서부터 복잡한 화합물 스크리닝에 이르기까지 광범위한 연구 응용 분야에서 활용됩니다. 

    See More
  • Life Science

    Unlocking Life with Precision

    Yokogawa는 단순히 측정하는 것을 넘어, 극한의 정밀도를 자랑하는 측정을 통해 연구의 질을 높입니다. 이는 마치 현미경으로 미세한 세포를 관찰하듯, 연구 대상을 더욱 정밀하게 분석하고 이해하는 데 도움을 줍니다. 새로운 약물 후보 물질의 효과를 정확하게 평가하고 부작용을 최소화하는 데 기여합니다. 생산 과정에서 발생할 수 있는 미세한 변화를 빠르게 감지하여 품질을 유지하고 생산성을 향상시킵니다.

    See More

Top