Introduction
In eukaryotic cells, actin filaments form cytoskeleton, a network of two types of fibrous structures, filaments and tubules. Cytoskeleton plays various key roles in cells such as the arrangement of cellular organelles, keeping the shape of cell, and power generation for cellular movement accompanying cell morphological changes in occasions such as cell division, muscle contraction and ciliary movement. In cells, many kinds of proteins associated with cytoskeleton precisely regulate the distribution and dynamic behavior of filaments; therefore, some kind of drug stimulation causes remarkable changes in the number, length, distribution, movement and stability of cytoskeleton filaments. The following describes the analysis of morphological changes in cytoskeleton caused by drug stimulation, using the “Morphology Analysis” protocol.
Fig1. Recognition of the cytoskeleton of MRC5 cell (Experiment 1)
A-1 and B-1 are original images, and A-2 and B-2 are recognized images.
Fig2. Morphological change due to A10 cell apoptosis(Experiment 2)
(1) Original images and analysis images
Original image (a) and analysis image (c) of control cells
Original image (b) and analysis image (d) of Staurosporine (10μM) treated cells
Left : (2) Number of cytoskeletons
Right : (3) Average cytoskeleton length and variation
(4) Cytoskeleton length distribution
(5) Cytoskeleton direction
(Horizontal direction as 0 degrees)
Experiment procedure
Experiment1
- MRC5 cells were seeded on 96-well plates at 20,000 cells/well, cultured for 24 hours, fixed with formaldehyde and stained actin with phalloidin.
Experiment2
- A10 cells were seeded on 96-well plates at 10,000 cells/well, cultured for 24 hours, and induced apoptosis by adding staurosporine (0-10μM, 2 hours).
- Fixed the cells with formaldehyde and stained actin with phalloidin.
The following were common procedure in both experiments:
- Images were captured using the CellVoyager CV6000 under the following conditions:
- Magnification: 40x objective lens
- Images captured per well: 1
- Exposure time (Alexa 488): 800msec
- The captured images were analyzed using the “Morphology Analysis” protocol.
- Cytoskeleton regions were identified from the original images.
- Feature quantities of identified cytoskeleton were measured.
Results and Conclusion
Changes in MRC5 cytoskeletal formation when apoptosis was induced were analyzed, using the “Morphology Analysis” protocol. As a result, significant differences from the control were identified in the number of actin filaments and the distribution of filament lengths (Fig. 2). Since the structural changes in cytoskeleton occur in cell migration, the “Morphology Analysis” protocol will be a useful tool for the study of the inflammatory response and also cancer metastasis.
Our Social Medias
We post our information to the following SNSs. Please follow us.
Follow us | Share our application | |
@Yokogawa_LS | Share on Twitter | |
Yokogawa Life Science | Share on Facebook | |
Yokogawa Life Science | Share on LinkedIn |
Yokogawa's Official Social Media Account List
Related Products & Solutions
-
Benchtop CQ1 Confocal System
CQ1은 공간을 절약하는 벤치탑 설계에서 최고 품질의 공초점 이미지와 확장된 라이브 셀 이미지 기능을 제공합니다.
-
CellVoyager High-Content Analysis System CQ3000
CQ3000은 사용자의 목적에 맞춰 다양한 기능을 조합하여 세포를 배양하는 동안 고해상도 3D 이미지를 빠르게 얻을 수 있습니다.
-
CV8000 High-Throughput System
CellVoyager CV8000은 가장 진보된 최첨단 high-content screening 시스템입니다. 향상된 내장 인큐베이터를 통해 extended live cell 반응을 분석할 수 있습니다. 이 system의 확장성과 함께 4대의 카메라, 5개의 레이저 및 옵션 사양인 내장 피펫팅 기능을 갖춘 이 시스템은 점점 더 복잡한 검사 및 분석의 발전과 high-content screening을 가능하게 합니다.
-
High Content Analysis CellVoyager
HCA(High-Content Analysis) 시스템은 당사의 강력한 소프트웨어와 함께 활용되어 기초 과학에서부터 복잡한 화합물 스크리닝에 이르기까지 광범위한 연구 응용 분야에서 활용됩니다.
-
Life Science
Unlocking Life with Precision
Yokogawa는 단순히 측정하는 것을 넘어, 극한의 정밀도를 자랑하는 측정을 통해 연구의 질을 높입니다. 이는 마치 현미경으로 미세한 세포를 관찰하듯, 연구 대상을 더욱 정밀하게 분석하고 이해하는 데 도움을 줍니다. 새로운 약물 후보 물질의 효과를 정확하게 평가하고 부작용을 최소화하는 데 기여합니다. 생산 과정에서 발생할 수 있는 미세한 변화를 빠르게 감지하여 품질을 유지하고 생산성을 향상시킵니다.