转盘共聚焦CSU

双转盘共聚焦技术

作为双转盘共聚焦技术的先行者,横河电机革新了光学显微镜中的活细胞成像。多光束扫描方法不仅能够高速成像,而且显著降低了光毒性和光漂白,使我们的共聚焦扫描单元成为活细胞成像事实上的标准工具。

高速、高分辨率成像

横河电机的共聚焦扫描单元采用先进的成像技术,帮助研究人员实现高速、高分辨率的活细胞成像。

  • 活细胞的快速延时共聚焦图像
  • 光毒性更小,光漂白更少
  • 活细胞共聚焦荧光成像能力
  • 长期高速成像时的稳定性
  • 便于对大量数据进行定量分析

详细介绍

我们将相关信息发布到以下社交网站上面。
请关注我们。

 

横河电机生命科学

•Twitter @Yokogawa_LS
•Facebook Yokogawa Life Science
•LinkedIn Yokogawa Life Science
•YouTube Life Science Yokogawa

 

横河电机官方社交媒体清单

社交媒体清单

CSU系列的比较

 型号 CSU-W1 CSU-X1
高端版 基础版
成像速度
(最大帧数/秒)
200 2,000 360
扫描仪电机转速
(rpm)
1,500-4,000 1,500-10,000
(可变)
1,800
(固定)*2
推荐的相机曝光时间 5毫秒 0.5毫秒 33毫秒
有效视场 17x16mm 10x7mm
转盘单元 最多可选择2个转盘
针孔尺寸:50µm、25µm
1个转盘
针孔尺寸:50µm
旋转位置触发信号 可输出外部信号 *2
滤镜 EX 可选
DM 可选(最多3个滤镜) 可选
(1个滤镜)
EM 可选
(最多10个带滤光轮的滤镜)
可选
(最多12个带滤光轮的滤镜)
可选
(1个滤镜)
添加或更换滤镜 用户现场:DM块和滤镜(EX、EM)
横河电机工厂:DM
*1 可选

CSU与其他共聚焦系统的比较

型号 CSU 常规点扫描共聚焦 常规狭缝扫描共聚焦 其他转盘共聚焦 落射荧光
(广角)
扫描类型 微透镜增强多光束扫描 单光束扫描 线扫描 磁盘扫描(多光束或狭缝)
光源 激光 汞灯或氙弧灯
探测器 CCD、EMCCD PMT 线阵CCD CCD、EMCCD
显微镜 灵活 特定 灵活/特定 灵活
图像的扫描速度 2000fps ~1fps ~120fps (512X512) <200fps 任意
光漂白/光毒性
共聚焦 高(X-Y-Z共聚焦)
(y分辨率降低)

带针孔的X-Y-Z共聚焦,狭缝扫描y分辨率降低)
图像质量
(背景)
高、良好信噪比
(低背景光)

(需要多次平均)

(高背景光、样本暗淡)

(高背景光)

用户实验室

  • 北卡罗来纳大学教堂山分校生物系Ted Salmon实验室
  • 美国国家心肺血液研究所(贝塞斯达校区)细胞和组织形态动力学实验室(LCTM)Waterman-Storer实验室
  • 哈佛医学院系统生物学系Tim Mitchison实验室
  • 加州大学戴维斯分校细胞与计算生物学系Scholey实验室
  • 加州大学旧金山分校细胞和分子药理学系Vale实验室
  • 马萨诸塞大学阿默斯特分校生物系Wadsworth实验室
  • 杜克大学生物学系Kiehart实验室
  • 犹他大学医学院HSC设施
  • 印第安纳大学医学中心印第安纳生物显微镜中心
  • 杜克大学神经生物学系Ehlers实验室
  • 北卡罗来纳大学教堂山分校Bob Goldstein实验室
  • 弗里德里希·米歇尔生物医学研究所的Andrew Matus实验室
  • 日本东北大学生命科学研究生院发展动力学实验室
  • 加州大学旧金山分校解剖学Zena Werb实验室
  • 东京大学心血管医学系Satoshi Nishimura实验室
  • 东京大学跨学科信息研究研究生院大岛实验室
  • 加州大学戴维斯分校Huser研究小组
  • 东京大学科学研究生院中野实验室

有用的网站

1) 互联网上的显微镜学和成像资源

显微镜学和成像各方面的完整列表,作者Douglas W. Cromey,来自亚利桑那大学药学院西南环境健康科学中心细胞成像部门

 

2) “Severo Ochoa”分子生物学中心(CBMSO)

包含一般信息、显微镜学实验室、出版物、课程和会议、社团、图像的链接,尤其有助于寻找显微镜学研讨会。

 

3) 细胞成像设备,是犹他大学健康科学中心研究设备部门的一部分

Chris Rodesch很好地解释了CSU磁盘扫描共聚焦系统

 

4) 分子表达网站

由佛罗里达州立大学国家高磁场实验室运营。
网络上的光学显微镜图像集合,以及多种类型显微镜学的信息。
由尼康(Nikon MicroscopyU)和奥林巴斯(Olympus Microscopy Resource Center)赞助的交互式Java教程不仅对学习共聚焦显微镜有用,而且对学习各种其他显微镜和相关技术也有帮助。

 

生命科学教材

Microscopy Techniques, Advances in Biochemical Engineering/Biotechnology Vol.95
系列编辑 T. Scheper, 卷编辑 J. Rietdorf, Springer(2005)
ISBN-10 3-540-23698-8

Confocal Microscopy for Biologists
Edited by Alan R.Hibbs,Kluwer Academic / Plenum Publishers(2004)
ISBN:0-306-48468-4(硬壳本) 0-306-48565-6(电子书)

Live Cell Imaging, A Laboratory Manual
编辑:Robert D. Goldman & David L. Spector. 第2版,Cold Spring Harbor Laboratory Press (2010)
ISBN:0-87969-893-4(平装本), ISBN 0-87969-892-6 (硬壳本)

Handbook of Biological Confocal Microscopy, 第3版
编辑:James B. Pawley, Springer(2006)

VideoMicroscopy, The Fundamentals
Shinya Inoue, Kenneth Spring, 第2版, Plenum Press. 纽约 (1997)

ISBN: 0-306-45531-5

Direct-View High-Speed Confocal Scanner: The CSU-10, Chapter 2: Cell Biological Applications of Confocal Microscopy (Methods in Cell Biology)
Shinya Inoue和Ted Inoue
编辑:Brian Matsumoto,Academic Press
ISBN:0-12-580445-8 ; 第2版 (2002/12)

文章:CSU技术及其应用

Quantification and clustering of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells.
Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S
已交稿
Current Application and Technology of Functional Multineuron Calcium Imaging.
Shigehiro Namiki,Yuji Ikegaya
Biological and Pharmaceutical Bulletin 第32卷 (2009),第11期
Live imaging of yeast Golgi cisternal maturation.
Kumi Matsuura-Tokita, Masaki Takeuchi, Akira Ichihara, Kenta Mikuriya, Akihiko Nakano
Nature 441, 1007-1010 (2006年6月22日)
Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems.
E. Wang, C. M. Babbey & K. W. Dunn
Journal of Microscopy, 第218卷,2005 年 5 月 2 日,148-159页
Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source.
D.M.Grant, D.S. Elson, D.Schimpf, C.Dunsby, J.Requejo-Isidro, E.Auksorius, I.Munro, M.A. A. Neil, P. M. W. French ,E. Nye G. Stamp, P.Courtney
Optics Letters 第30卷,第24期 (2005 ) 3353
Optimization of Spinning Disk Confocal Microscopy: Synchronization with the Ultra-Sensitive EMCCD.
F.K.Chong, C.G.Coates, D.J.Denvir, N.McHale, K.Thornbury & M.Hollywood
Proceedings of SPIE 2004
Spinning disk confocal microscope system for rapid high-resolution, multimode, fluorescence speckle microscopy and green fluorescent protein imaging in living cells.
Maddox PS, Moree B, Canman JC, Salmon ED
Methods Enzymol. 360:597-617 (2003)
A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells.
Adams, M.C., Salmon, W.C., Gupton, S.L., Cohan, C.S., Wittmann, T., Prigozhina, N. & Waterman-Storer, C.M
Methods, 29, 29-41 (2003)
Spinning-disk confocal microscopy ? a cutting-edge tool for imaging of membrane traffic.
Nakano, A.
Cell Structure Function, 27, 349-355.(2002)
High Speed 1-frame/ms scanning confocal microscope with a miclolens and Nipkow disks.
T.Tanaami, S.Otsuki,N.Tomosada, Y.Kosugi. M.Shimizu & H.Ishida
Applied Optics, 第41卷,第22期(2002)
New imaging modes for lenslet-array tandem scanning microscopes.
T. F. Watson, R. Juskaitis & T. Wilson
Journal of Microscopy, 第205卷,2月2日(2002) 209-212
High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3-D imaging of single fluorescence molecule in real time.
A.Ichihara, T.Tanaami, K.Isozaki, Y.Sugiyama, Y.Kosugi, K.Mikuriya, M.Abe and I.Uemura
Bioimages 4, 57-62(1996)

文章: 细胞生物学

(囊泡运输、肌动蛋白动力学、微管动力学、细胞分裂)

Long-term, Six-dimensional Live-cell Imaging for the Mouse Preimplantation Embryo That Does Not Affect Full-term Development.
Yamagata, K., Suetsugu, R. and Wakayama, T., J. Reprod. Dev., 55: 328-331(2009) 
The Caenorhabditis elegans DDX-23, a homolog of yeast splicing factor PRP28, is required for the sperm-oocyte switch and differentiation of various cell types.
Konishi, T., Uodome, N., and Sugimoto, A.,Developmental Dynamics 237, 2367-2377(2008)
Determining the position of the cell division plane.
J. C. Canman, L. A. Cameron, P.S. Maddox, A. Straight, J, S. Tirnauer, T. J. Mitchison, G. Fang., T. M. Kapoor & E. D. Salmon, Nature 424, 1074-1078 (2003年8月28日) “Cover”
Taxol-stabilized Microtubules Can Position the Cytokinetic Furrow in Mammalian Cells.
Katie B. Shannon, Julie C. Canman,C. Ben Moree,Jennifer S. Tirnauer, E. D. Salmon, Mol Biol Cell. 9月; 16(9): 4423-4436 (2005)
Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase.
G. C. Rogers, S. L. Rogers, T. A. Schwimmer,S. C. Ems-McClung, .C E. Walczak, R. D. Vale, J. M. Scholey & D. J. Sharp, Nature 427(6972):, 364-370 (2004)
Crm1 is a Mitotic Effector of Ran-GTP in Somatic Cells
Arnaoutov, A., Azuma, Y., Ribbeck, K., Joseph, J., Boyarchuk, Y. and Dasso, M, Nat Cell Biol. 6月;7(6):626-32 (2005).
Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae.
J.N. Molk, E.D. Salmon, and K. Bloom, JCB, 第172卷,第1期, 27-39 (2006)
Centrosome fragments and microtubules are transported asymmetrically away from division plane in anaphase
Nasser M. Rusan and Patricia Wadsworth ,JCB 168 (1) 21-28 (2005)
The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line.
G. Goshima and R.D. Vale,JCB 162(6) 1003-1016 (2003)
Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables.
Hwang, E., Kusch, J., Barral, Y. & Huffaker, T.C, J. Cell Biol. 161, 483-488 (2003)
Cell migration without a lamellipodium : translation of actin dynamics into cell movement mediated by tropomyosin
S.L. Gupton, K.L. Anderson, T. P. Kole, R.S. Fischer, A. Ponti, S.E. Hitchcock-DeGregori, G. Danuser, V.M. Fowler, D.Wirtz, D. Hanein, and C.M. Waterman-Storer ,JCB 168(4) 619-631(2005)
Actin dynamics in the contractile ring during cytokinesis in fission yeast.
Pelham, R.J. & Chang, F, Nature, 419, 82-86. (2002)
CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity.
Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Sugiura S,Yoshimura K, Kadowaki T, Nagai R, Nature Medicine 8, 914- 920 (2009年8月15日)
T-cell engagement of dendritic cells rapidly rearranges MHC class II transport.
M. Boes, J. Cerny, R. Masso, M. Op den Brouw, T. Kirchhausen, J. Chenk & H. L. Ploegh, Nature 418, 983- 988 (2002年8月29日) “Cover”
Functional coordination of intraflagellar transport motors.
G. Ou, O.E. Blacque, J.J.Snow, M.R. Leroux & J.M. Scholey,Nature 436(7050):583-7. (2005).
Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells
Kreitzer, G., Schmoranzer, J., Low, S.H., Li, X., Gan, Y., Weimbs, T., Simon, S.M. & Rodriguez-Boulan, E, Nature Cell Biol. 5, 126-136. (2003)
Dynamics of Membrane Clathrin-Coated Structures During Cytokinesis.
James H. & Wang, Yu-Li Warner, Anne K., Keen, Traffic 7 (2), 205-215. (2006 ) 

文章:神经科学

Activity-induced targeting of profilin and stabilization of dendritic spine morphology.
Ackermann, M., and A. Matus, Nat Neurosci. 11月;6(11):1194-200 (2003)
Dynamics and Regulation of Clathrin Coats at Specialized Endocytic Zones of Dendrites and Spines.
T.A. Blanpied, D.B. Scott, M.D. Ehlers, Neuron,  第36卷, 435-449, 10月24日(2002)
Neurabin/Protein Phosphatase-1 Complex Regulates Dendritic Spine Morphogenesis and Maturation.
R.T.Terry-Lorenzo, D.W. Roadcap, T. Otsuka , T.A. Blanpied, P.L. Zamorano, C.C. Garner, S. Shenolikar, and M.D. Ehlers, MBC, 第16卷,第5期, 2349-2362, 5月 (2005)
Phosphatidylinositol phosphate kinase type I regulates dynamics of large dense-core vesicle fusion.
L.W..Gong , G. D.Paolo, E. Diaz ., G.Cestra , M-E. Diaz, M. Lindau , P.De Camilli , and D. Toomre , PNAS, 第102卷,第14期, 5204-5209 (2005)

钙动力学

Formation of planar and spiral Ca2+ waves in isolated cardiac myocytes.
Ishida, H., Genka, C., Hirota, Y., Nakazawa, H. & Barry, W.H, Biophys. J. 77, 2114-2122 (1999)
Simultaneous imaging of phosphatidyl inositol metabolism and Ca2+ levels in PC12h cells.
Morita,M,Yoshiki, F,and ,Kudo,Y, BBRC 308, 673-678 (2003)
Calcium oscillations in interstitial cells of the rabbit urethra.
Johnston, L., Sergeant, G. P., Hollywood, M. A., Thornbury, K. D. & McHale, N. G,The Journal of Physiology 565 (2), 449-461 (2005).

微血管血流

Real-time observation of hemodynamic changes in glomerular aneurysms induced by anti-Thy-1 antibody.
Oyanagi-Tanaka, Y., Yao, J., Wada, Y., Morioka, T., Suzuki, Y., Gejyo, F., Arakawa, M. & Oite, T, Kidney Int. 59, 252-259. (2001)
Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse.
Shahrokh Falati, Prter Gross, Glenn Merrill-Skoloff, Barbara C. Furie & Bruce Furie, Nat Med 8 (10) 1175-1180(2002)

其他应用

Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage
Hiroko P. Indo,Mercy Davidson,Hsiu-Chuan Yen,Shigeaki Suenaga,Kazuo Tomita,Takeshi Nishii,Masahiro Higuchi,Yasutoshi Koga,Toshihiko Ozawa,Hideyuki J. Majima,Mitochondrion No.7 106-118(2007)

参考

概述:

Discovering the Basic Principles of Life through the Live Imaging of C. elegans

概述:

Visualizing the cell behavioral basis of epithelial morphogenesis and epithelial cancer progression

概述:

Spinning Disk Confocal Microscopy for Quantitative Imaging and Multi-Point Fluorescence Fluctuation Spectroscopy.

概述:

Wide and Clear
Confocal Scanner Unit

行业:
概述:

Comparison between CSU and conventional LSM in 4D movies.

概述:

To investigate interactive dynamics of the intracellular structures and organelles in the stomatal movement through live imaging technique, a CSU system was used to capture 3-dimensional images (XYZN) and time-laps images (XYT) of guard cells.

概述:

Faster, Brighter, and More Versatile Confocal Scanner Unit

行业:
横河技报
2.2 MB
概述:

List of Selected Publications : CSU-X1

概述:

List of Selected Publications : CSU-W1

下载

视频

概述:

YOKOGAWA proprietary Spinning Disk technology enables fast real-time confocal imaging for applications such as high-speed 3D and long-term live cell imaging. These quantifiable imaging analysis are essential tools for modern precision drug discovery.
 

概述:

YOKOGAWA will contribute to technology evolution particularly in measurement and analytical tools to help build a world where researchers will increasingly focus on insightful interpretation of data, and advancing Life Science to benefit humanity.

新闻

想要了解更多的信息,技术&解决方案?

联系我们

置顶
WeChat QR Code
横河电机(中国)有限公司