MANIWA Yukio1 KITAMURA Satoshi1 AOYAMA Kimihide1 MATSUYAMA Mitsugu1
We have developed two models of CENTUM VP I/O modules dedicated for turbomachinery controls, so that CENTUM VP will be capable to perform the high- speed turbomachinery control actions which are almost impossible by the legacy products of DCS (Distributed Control System). By installing these modules in CENTUM VP platform, a CENTUM VP system can be used as a high-speed turbomachinery control system with the same reliability that the legacy distributed control systems of CENTUM series have been reputed for. Moreover, since the sales of new modules is carried out along with the sales of DCS systems, the current engineering and maintenance services can be fully utilized for the services of the turbomachinery control systems. This paper will introduce the typical features of the turbomachinery control applications integrated in the CENTUM VP systems and the features of the above I/O modules dedicated to the turbomachinery controls.
- Industrial Automation Business Headquarters
INTRODUCTION
To date, Yokogawa has focused on DCS (Distributed Control System) which control the entire power generation plant, including boilers, in the electric power industry. In contrast, turbomachinery control has been handled by turbine manufacturers, but as the electric power market has been active internationally, especially in China and India, in recent years, Yokogawa has been developing turbomachinery control systems to to further develop the electric power industry. A mechanical control unit incorporated in the turbine main unit was the precursor of turbomachinery control systems, which have continued to be manufactured by turbine manufacturers even though they are still based on EHC (Electro-Hydraulic Controller) or DEHC (Digital Electro-Hydraulic Controller). However, this causes the problem that different hardware is used between turbomachinery control systems and power-generating plant control systems. Yokogawa has therefore developed turbomachinery I/O modules that can be implemented in the new integrated production control system, the CENTUM VP platform. These I/O modules integrate DCS and DEHC features and so can monitor and control the entire power generation plant including turbomachinery control in a unified hardware environment, with the equivalent reliability as the reputable CENTUM series (Figure 1).
Figure 1 Example Configuration of Turbine Control System in CENTUM VP
This paper describes how turbomachinery control is integrated in the CENTUM VP and introduces the functions of the new turbine dedicated I/O modules.
SYSTEM CONFIGURATION
Figure 1 shows an example of the configuration of the turbomachinery control system on the CENTUM VP platform. The system 1 in the figure is a turbomachinery control/ protection system in which turbomachinery I/O modules (AGS813 and AGP813) developed this time are installed in the CENTUM VP's field control station (FCS). It actually performs turbine revolution speed control and interlock. The system 2 in the figure handles control over boilers, auxiliary equipments, etc. and has long been handled by DCS. In addition to these systems, the turbomachinery control system consists of a Human Interface Station PC (HIS), Engineering Station PC (ENG), and Sequence of Events Server PC (SOE server). The FCSs and ENG, HIS, and SOE server are connected by a real-time network system and linked via Ethernet (V-net/IP). It is configured so that all features, including control of boilers and auxiliary equipments and a turbine control/protection, are integrated on the same CENTUM VP platform.
Table 1 Types of Turbine Control I/O Modules
Model | Product Name |
---|---|
AGS813 | Servo module |
AGP813 | High speed protection module |
HIGH-SPEED CONTROL USING DEDICATED INTERFACES
Figure 3 Control Loop
YOKOGAWA have developed two models of CENTUM VP I/O modules dedicated for turbomachinery controls, so that CENTUM VP will be capable to perform the high-speed turbomachinery control actions which are almost impossible by the legacy products of DCS (Table 1). One model is AGS813, a servo module for controlling the servo valve opening. Another model is AGP813, a high-speed protection module for sending high-speed emergency interlock outputs.
Table 2 Basic Specifications of Servo Module
Position input accuracy | ± 1% 4 ch. @ LVDT input ± 0.1% 4 ch. @ 1 to 5 V input, redundancy settable |
---|---|
Exciting power output range | 4 to 7 Vrms 4 ch. |
Control output accuracy | ± 0.3% 2 ch. @ ± 50 mA output, dither output available |
Shutdown signal | 24 V DC contact 2 ch. |
Control interval (algorithm) | 5 ms (PID) |
Dual redundant | Standby redundancy |
Servo Module (AGS813)
Turbine revolution control is achieved by controlling a regulating valve that hydraulically controls a steam flow rate in the case of a steam turbine or a gas flow rate in the case of a gas turbine. The servo module can be used to perform the high-speed position feedback control of the regulating valves based on the manipulated outputs and the valve openings calculated by the supervisory system (DCS)(Figure 2). Table 2 shows the main specifications of the servo module.
-
Figure 4 Flow of Protection Logic Creation Engineering
Figure 3 shows an example of the configuration of the turbomachinery control loop. The degree of opening of the valve is independently processed by the I/O modules, enabling it to be controlled at high speed (control interval of 5 ms). The main loop is controlled by the CENTUM VP field control unit (FCU). - Dedicated input/output function
The servo valve driving circuit capable of handling LVDT inputs, exciting power supply, and positive and negative current output, or the dedicated input/output function required for valve opening-degree change control of the servo valve, has been installed in all the I/O modules.
High-Speed Protection Module (AGP813)
This module internally implements the logic that can be set by the user. Thus, it can easily realize high-speed processing of protection logic, such as over-speed trip and power load unbalance, which are essential features for turbomachinery control.
Table 3 shows the main specifications of the protection module.
- Protection logic
This module executes a series of computation processing based on a signal from the turbine in accordance with set logic and outputs the results to the field. Furthermore, the set values can be input from an FCU to the logic or the FCU can be notified of internal logic data. The I/O module independently executes protection logic in this way; it can process it at high speed (control interval of 5 ms) and can also easily be linked to function blocks of the FCU. - High-accuracy pulse input
As a speed sensor that detects turbine revolution speed, the AGP813 supports both inputs of MPU (magnetic pickup) and active pickup on the same channel and can receive various pulse signals from the speed sensor with high accuracy.
I/O MODULE ENGINEERING
The I/O modules can be registered and setting items can be defined by using the CENTUM VP engineering function and then downloaded via FCU. AGP813 protection logic can be defined using the newly developed logic builder in the ENG (Engineering station), and defined protection logic can be debugged using the logic test tool in the ENG (Engineering station). The logic test tool can run the same protection logic as processing performed in the AGP813 on the PC. This enables the engineering contents to be efficiently verified. Figure 4 shows the flow of engineering on the AGP813.
OPERATION INTEGRATION
Linkage with FCU
Data exchanged between a turbomachinery I/O module and FCU includes a mixture of multiple data types, such as data input/ output from/to the field, PID control status in the I/O module, protection logic variables, etc. Therefore, data is exchanged between the I/O module and FCU via the communication input/ output area, so that a wide variety of data can be handled flexibly. Figure 5 shows the data flow between the FCU and turbomachinery I/O module. The function blocks in the FCU can easily accomplish a shutdown command to the I/O module, AUTO/MAN switching, or function block tracking action by combining themselves with communication input/output data.
Figure 5 Signal Flow between FCU and Turbomachinery I/O Module
Operation and Monitoring
Input/output values or internal states of the I/O modules are stored in the function blocks of the FCU via the communication input/output area, which can be referred to from the HIS. Moreover, diagnostic information of the I/O modules themselves can also be conveyed to the HIS via the communication interface. Therefore, the HIS can perform turbine status monitoring, alarm monitoring, and instruction operations in the same way as the reputable CENTUM series.
In addition, the AGP813 has the SOE function, and the interface with the high-level system is fully backward compatible with the existing SOE function interface, enabling events to be acquired in the existing SOE server.
HIGH RELIABILITY
The turbomachinery I/O module performs turbomachinery control independently in the I/O module. Thus, if the I/O module fails, turbine controllability is lost, with major consequences. The turbomachinery I/O module developed this time enables dual redundancy (standby redundancy system) to avoid the impact of an I/O module failure. The turbomachinery control and standby I/O modules independently perform control computation inside themselves to achieve high-speed control. Because the control and standby I/O modules operate independently of each other, there are differences in the computation results between the control and standby modules due to a difference in the acquisition timing of input signals from the field. This may cause the output value to bump upon switching the control right. As shown in Figure 6, the newly developed turbomachinery control system has a mechanism in which the FCS reads the output value and internal status of the control I/O module and makes the standby I/O module match them. At the instant when dual redundancy switching occurs, the FCU outputs equalized values and then switching is made to output internally controlled by the module. This dual-redundant mechanism enables bumpless high-speed switching, ensuring high reliability.
Figure 6 Equalization Mechanism
CONCLUSION
This paper has introduced the features, etc. of the turbomachinery control system for the CENTUM VP. Yokogawa has developed a servo module and a high-speed protection module as turbomachinery I/O modules and has developed the turbomachinery control system on the CENTUM VP platform. A range of new high-speed I/O modules will be added using this platform for deployment to the high-speed control field (electric control and servo systems) which is difficult to accomplish by conventional DCS.
REFERENCES
- Charles R. Rutan, "Turbine Over-speed Trip Protection," Proceedings of the 32nd Turbo-machinery Symposium, 2003, pp. 109-120
- Ronald Hitzel and Fred Block, "Retrofitting Steam Turbines with Modern Control Platforms," Power GEN 2003 – Las Vegas, SIEMENS, 2003, 16p.
- Union for the Co-ordination of Transmission Electricity, UCTE Operation Handbook
- Thermal and Nuclear Power Engineering Society, Measurement Control and Automation (Thermal and Nuclear Power Engineering Society's lecture 21), 1994 in Japanese
- 'CENTUM' is a registered trademark of Yokogawa Electric Corporation. 'CENTUM VP' is under patent pending. Other product names and brand names in this paper are trademarks or registered trademarks of respective holders.
行业
-
地热发电
地热能不受天气条件的影响,整年都能进行稳定的电力供应。此外,由于没有燃料在地面上燃烧,并且只释放出极少量的二氧化碳,因此环保性非常高。沿着环太平洋带(也称为“太平洋火圈”),在日本、菲律宾、印度尼西亚、新西兰、墨西哥、哥斯达黎加和美国等国家以及位于其他地热活动区域的冰岛、土耳其和意大利等国家都有丰富的地热资源。截至目前,横河已在日本、东南亚等地参与了30个地热发电项目,提供了多种测量和控制技术,提高了地热发电系统的可靠性和维护效率。
-
大宗石油化工
无论是生产石化产品、无机物还是中间产品,化工企业都面临着成本和利润率的压力,必须及时有效地交付产品,同时保持安全、合规地运营。此外,化工企业必须应对原料和能源价格的波动,并为市场提供适合的产品组合。
横河电机长期服务于大宗化工市场,得到大家的广泛认可。通过我们的产品、解决方案和行业专业知识,横河了解您的市场和生产需求,并将与您合作,在您的工厂生命周期中提供可靠、经济的解决方案。
-
水和废水
横河电机通过开发更节能的技术,帮助减少运营的碳排放,以及构建保护环境免受污染的坚固建筑,为可持续水生产提供控制解决方案。横河凭借先进的技术和广泛的应用专业知识与客户合作,提供可持续水生产的解决方案,促进客户的业务,并让整个工厂在生命周期中增加效用。横河的技术和产品可提高工厂的性能,确保它们在当今的水处理领域中具有竞争力,并降低运营成本。横河支持市政和工业水处理领域的各种水控制方面的应用。
-
电力
在20世纪70年代中期,横河电机发布EBS电子控制系统,从而正式进入电力行业。从那时起,横河电机一直坚持不断发展技术和能力,旨在为客户提供更好的服务和解决方案。
横河电机凭借着电力解决方案网络,在充满活力的电力市场中发挥着积极的作用。通过结合资源和行业知识,使得团队合作更加紧密。横河电机的电力专业人员们将携手合作,为客户提供适合其复杂要求的解决方案。
相关产品&解决方案
-
集散控制系统(DCS)
横河电机的集散控制系统(DCS) 可实现工业过程的自动化和控制,并提高业务绩效。30,000多套系统的经营者选择采用横河电机的DCS来实现其生产目标。