Introduction
In eukaryotic cells, actin filaments form cytoskeleton, a network of two types of fibrous structures, filaments and tubules. Cytoskeleton plays various key roles in cells such as the arrangement of cellular organelles, keeping the shape of cell, and power generation for cellular movement accompanying cell morphological changes in occasions such as cell division, muscle contraction and ciliary movement. In cells, many kinds of proteins associated with cytoskeleton precisely regulate the distribution and dynamic behavior of filaments; therefore, some kind of drug stimulation causes remarkable changes in the number, length, distribution, movement and stability of cytoskeleton filaments. The following describes the analysis of morphological changes in cytoskeleton caused by drug stimulation, using the “Morphology Analysis” protocol.
Fig1. Recognition of the cytoskeleton of MRC5 cell (Experiment 1)
A-1 and B-1 are original images, and A-2 and B-2 are recognized images.
Fig2. Morphological change due to A10 cell apoptosis(Experiment 2)
(1) Original images and analysis images
Original image (a) and analysis image (c) of control cells
Original image (b) and analysis image (d) of Staurosporine (10μM) treated cells
Left : (2) Number of cytoskeletons
Right : (3) Average cytoskeleton length and variation
(4) Cytoskeleton length distribution
(5) Cytoskeleton direction
(Horizontal direction as 0 degrees)
Experiment procedure
Experiment1
- MRC5 cells were seeded on 96-well plates at 20,000 cells/well, cultured for 24 hours, fixed with formaldehyde and stained actin with phalloidin.
Experiment2
- A10 cells were seeded on 96-well plates at 10,000 cells/well, cultured for 24 hours, and induced apoptosis by adding staurosporine (0-10μM, 2 hours).
- Fixed the cells with formaldehyde and stained actin with phalloidin.
The following were common procedure in both experiments:
- Images were captured using the CellVoyager CV6000 under the following conditions:
- Magnification: 40x objective lens
- Images captured per well: 1
- Exposure time (Alexa 488): 800msec
- The captured images were analyzed using the “Morphology Analysis” protocol.
- Cytoskeleton regions were identified from the original images.
- Feature quantities of identified cytoskeleton were measured.
Results and Conclusion
Changes in MRC5 cytoskeletal formation when apoptosis was induced were analyzed, using the “Morphology Analysis” protocol. As a result, significant differences from the control were identified in the number of actin filaments and the distribution of filament lengths (Fig. 2). Since the structural changes in cytoskeleton occur in cell migration, the “Morphology Analysis” protocol will be a useful tool for the study of the inflammatory response and also cancer metastasis.
Our Social Medias
We post our information to the following SNSs. Please follow us.
Follow us | Share our application | |
@Yokogawa_LS | Share on Twitter | |
Yokogawa Life Science | Share on Facebook | |
Yokogawa Life Science | Share on LinkedIn |
Yokogawa's Official Social Media Account List
相关产品&解决方案
-
CellVoyager高内涵分析系统CQ3000
CQ3000可以根据应用组合选项,在培养细胞的同时快速获取高分辨率的3D图像。
-
CQ1台式高内涵分析系统
CellVoyager CQ1采用节省空间的台式设计,提供高质量的共聚焦图像和延长的活细胞成像。
-
CV8000高内涵筛选系统
CellVoyager CV8000是先进的高内涵筛选系统。改进的内置培养箱可以让客户分析长期的活细胞反应。凭借其可扩展性、4个摄像头、5个激光器和可选的内置移液器,该系统允许日益复杂的分析开发和高内涵筛选。
-
生命科学
解锁生命本质
横河电机灵敏、高精度的解决方案可实现快速准确的测量,支持突破性的研究,加快药物发现,并优化大规模生物生产。
-
高内涵分析
我们的高内涵分析系统利用强大的分析软件助力从基础科学到药物发现筛选的一系列研究应用。