Introduction
For years, many types of high-density culture methods, such as spheroids, fiber scaffolds, and extracellular matrixes, have been proposed for in vitro cell-based assays. These culture systems have been recognized to more accurately simulate a cells natural environment than standard monolayer cultures on a flat substrate. Therefore, cells in high-density culture conditions are expected to exhibit responses against chemical treatments that closely resemble responses of tissues in vivo.
General homogeneous assay protocols originally developed for monolayer culture can be applicable to these high-density culture systems with minor modifications.
However, for microscopy and other image-based assays, there are significant obstacles to overcome when applying conventional image analysis protocols to high-density cultures. The optical architectures of most microscope-coupled research instruments do not capture light based information throughout the entire thickness cell aggregates due to depth-of-field limitations. In addition, image-analysis software optimized for monolayer cell culture are not able to perform cell-by-cell object recognition and resulting quantification.
Here we show a set of examples with an ultra-high density HepG2 (hepatocellular carcinoma) cell culture to explain how the CQ1 can capture clear images from entire thickness of a cell layer three-dimensionally. Additionally, we will show how the CQ1 can analyze cell responses against chemical treatment, on a cell-by-cell basis.
The protocol on this note has a potential applications for analyses of various high-density cultures, including three dimensional cell culture conditions.
Figure 1. Images of highly dense HepG2 cultures and nuclear contouring.
Non-treated (a) or staurosporine (10-7 M for 48 h) treated (c) cells.
Three dimensional cell-by-cell nuclear recognition was carried out by using the Spheroid Analysis Algorithm of the CQ1 software (b and d). Objective lens: 20X.
Experimental procedure
•A 96-well glass bottom microplate was coated with an extra cellular matrix, Matrigel (5 fold dilution with culture medium).
•HepG2 (hepatocellular carcinoma) cells were seeded on the pre-coated plate at a density of 5X104 cells/well. The plate was incubated for 48 hours to create an over-confluent state.
•Staurosporine was added to experimental wells and the plate was incubated for and additional 48 hours.
•Cells were fixed with a formaldehyde solution then tagged with anti-active caspase-3 and anti-H3Ser10P. Bound primary antibodies were visualized with fluorescently labelled secondary antibodies. Cell nuclei were stained with Draq7 in the presence of RNaseA.
•Cell images were captured and the images analyzed by the CQ1. Graphing and statistical processing was carried out using FCS Express™ 5 Image Cytometry (De Novo Software, Glendale, CA) (optional).
Results and discussions
An ultra high-density HepG2 cell culture was created and cell-by-cell analysis was carried out by the CQ1 to evaluate cell responses against staurosporine, a hepatotoxic chemical.
•To facilitate dense cell layer formation, the plate was coated with an extracellular matrix. In preliminary tests, compared with culture on a non-coated normal plastic-bottom plate, HepG2 cells plated on the matrix-coated substrate exhibited approximately ten-fold higher sensitivity toward staurosporine toxicity (data not shown).
•Images of fluorescently labelled cells were captured in three-dimensions from the thick cell layer formation (Fig 2). Two molecular markers, H3Ser10P (cell growth) and active caspase-3 (apoptosis) were selected for immunofluorescent labelling.
•Segmentation of individual cell nuclei enabled cell-by-cell characterization in response to sturosporine (Fig 3).
•The CQ1 is a versatile system that allows simultaneous analysis of multiple markers and parameters at the single cell level in high density cell culture based assays, including thick cultures of hepatocytes.
Figure 2. 3D reconstitution of HepG2 cell images.
Twenty-one slices (along the Z-axis) of a multicolor image encompassing 50 µm of thickness were reconstructed to create a 3D image. Non-treated (a) or staurosporine treated (b) cells were fluorescently immunostained with anti-H3Ser10P (magenta) and anti-active caspase-3 (green). Cell nuclei were stained with Draq7 (gray). Objective lens: 20X.
Figure 3. Multi-parametric analysis of two cell markers
Image analysis data from the CQ1 of non-treated (a) or staurosporine treated (b) cells was exported and further analyzed by scatter plots in FCS Express™ 5 Image Cytometry. The proportions of the growing or dead cell populations were evaluated quantitatively. On each scatter plot, 1X104 events were plotted.
Our Social Medias
We post our information to the following SNSs. Please follow us.
Follow us | Share our application | |
@Yokogawa_LS | Share on Twitter | |
Yokogawa Life Science | Share on Facebook | |
Yokogawa Life Science | Share on LinkedIn |
Yokogawa's Official Social Media Account List
相关产品&解决方案
-
CellPathfinder
CellPathfinder is designed for our HCA systems, CQ1 and the CellVoyager series. From beginners to experts, the analysis software lets you quantify subtle physiological changes and even label-free samples with various graph options.
-
CellVoyager高内涵分析系统CQ3000
CQ3000可以根据应用组合选项,在培养细胞的同时快速获取高分辨率的3D图像。
-
CQ1台式高内涵分析系统
CellVoyager CQ1采用节省空间的台式设计,提供高质量的共聚焦图像和延长的活细胞成像。
-
CV8000高内涵筛选系统
CellVoyager CV8000是先进的高内涵筛选系统。改进的内置培养箱可以让客户分析长期的活细胞反应。凭借其可扩展性、4个摄像头、5个激光器和可选的内置移液器,该系统允许日益复杂的分析开发和高内涵筛选。
-
生命科学
解锁生命本质
横河电机灵敏、高精度的解决方案可实现快速准确的测量,支持突破性的研究,加快药物发现,并优化大规模生物生产。
-
高内涵分析
我们的高内涵分析系统利用强大的分析软件助力从基础科学到药物发现筛选的一系列研究应用。