Introduction
Time lapse confocal imaging has been an essential method to investigate the 3D dynamic behaviors of cells in tissue cultures. For long-term live cell imaging, it is critical to reduce phototoxic damage to the cells caused by repeated laser scanning. Yokogawa CSU (confocal scanner unit) is a confocal unit using a microlens-enhanced dual Nipkow disk confocal optical system, which has been shown to be less harmful to living cells compared to conventional single beam scanning devices. The CQ1 is an all-in-one confocal quantitative imaging cytometer based on the CSU. Here we report the 3D time lapse live cell imaging in a multilayered cell sheet using CQ1.
Methods
- Five-layered myoblast cell sheets were constructed from human skeletal muscle myoblasts (HSMM) and human skeletal muscle fibroblasts (HSMF) .
- HSMMs and HSMFs were labeled with CellTrackerTM Orange
- Human umbilical vein endothelial cells (HUVEC) expressing GFP (GFP-HUVEC) were overlaid by the cell sheet and co-cultured.
- Time lapse imaging (67 hours, 30 min interval, 40x objective lens , 49 fields) was performed by CQ1 equipped with an internal incubation chamber to regulate culture environment.
Results
1.Dynamic migration and network formation of GFP-HUVECs captured by 3D time lapse imaging
Time lapse movie Play
Fig. 1-1. Time lapse images of the cell sheet.
Images were reconstructed of the field indicated by the yellow frame in the large field stitched image in Method fig.2.
Fig. 1-2. Migration of the GFP-HUVECs into the cell sheet.
Single slice images showing the migration of HUVECs into upper layers. (Rows, from top to bottom) Single slice images of layers 3, 2, 1 and corresponding Y-Z plane images of the cell sheet. (Columns, from left to right) Images acquired at 0, 17, 34 and 51 hr incubation. The image filed is the same as fig. 1-1.
2.Quantification of the migration of GFP-HUVECs into the five-layered cell sheet
Fig. 2. Temporal change of the distribution GFP-HUVECs in the cell sheet.
GFP fluorescence intensity in each layer was indicated as the ratio against the total GFP intensity in the cell sheet.
Summary & Discussions
- GFP-HUVECs dynamically migrated upward into the five-layered cell sheet constructed from HSMMs and HSMFs.
- The GFP-HUVECs formed a reticulate network in the horizontal plane in the middle layers.
- Long-term 3D time lapse imaging by CQ1 revealed a dynamic process of the active migration and the formation of the cellular network in the multilayered cell sheet.
- CQ1 would be a powerful research tool in tissue engineering as well as regenerative medicine and drug screening.
Data provided by Dr. Nagamori, Osaka Institute of Technology
Reference: Nagamori E. et al., Biomaterials, 34, 662-668. (2013)
Our Social Medias
We post our information to the following SNSs. Please follow us.
Follow us | Share our application | |
@Yokogawa_LS | Share on Twitter | |
Yokogawa Life Science | Share on Facebook | |
Yokogawa Life Science | Share on LinkedIn |
Yokogawa's Official Social Media Account List
相关产品&解决方案
-
CellPathfinder
CellPathfinder is designed for our HCA systems, CQ1 and the CellVoyager series. From beginners to experts, the analysis software lets you quantify subtle physiological changes and even label-free samples with various graph options.
-
CellVoyager高内涵分析系统CQ3000
CQ3000可以根据应用组合选项,在培养细胞的同时快速获取高分辨率的3D图像。
-
CQ1台式高内涵分析系统
CellVoyager CQ1采用节省空间的台式设计,提供高质量的共聚焦图像和延长的活细胞成像。
-
CV8000高内涵筛选系统
CellVoyager CV8000是先进的高内涵筛选系统。改进的内置培养箱可以让客户分析长期的活细胞反应。凭借其可扩展性、4个摄像头、5个激光器和可选的内置移液器,该系统允许日益复杂的分析开发和高内涵筛选。
-
生命科学
解锁生命本质
横河电机灵敏、高精度的解决方案可实现快速准确的测量,支持突破性的研究,加快药物发现,并优化大规模生物生产。
-
高内涵分析
我们的高内涵分析系统利用强大的分析软件助力从基础科学到药物发现筛选的一系列研究应用。