Our microscopy and life sciences solutions are designed to support applications from basic research to drug discovery and pre-clinical trials.
Yokogawa’s high content analysis systems and dual spinning disk confocal technologies are used in regenerative medicine, pharmaceutical research, and precision medicine to deliver rapid, high-resolution live cell imaging.
-
Spinning Disk Confocal CSU
Using our proprietary dual spinning disk design, Yokogawa’s confocal scanner units transform optical microscopes by enabling real-time live cell imaging.
-
High Content Analysis CellVoyager
Our high-content analysis (HCA) systems utilize powerful software to address a wide range of research applications from basic science to complex compound screening.
-
FlowCam: Flow Imaging Microscopy
With the FlowCam you can analyze particles accurately, reliably and quickly using automated imaging technology to advance your research, increase productivity, and ensure quality.
-
Single-Cell Analysis Solution Single Cellome™
We are developing cell handling technology for single-cell and live cells. SU10 provides selective, minimally damaging automated nano-point delivery. SS2000 provides automatically subcellular sampling based on confocal microscopy technology.
Подробно
We post our information to the following SNSs.
Please follow us.
Yokogawa Life Science
@Yokogawa_LS | |
Yokogawa Life Science | |
Yokogawa Life Science | |
•YouTube | Life Science Yokogawa |
Yokogawa's Official Social Media Account List
Principles of Spinning disk confocal
The most common conventional confocal microscopes use a single laser beam to scan a specimen, while the CSU scans the field of view with approximately 1,000 laser beams, by using microlens-enhanced Nipkow-disk scanning: in short, CSU can scan 1,000 times faster.
By using a disk containing microlens arrays in combination with the Nipkow disk, we have succeeded in dramatically improving the light efficiency and thus successfully made real-time confocal imaging of live cells possible.
The expanded and collimated laser beam illuminates the upper disk containing about 20,000 microlenses (microlens array disk). Each microlens focuses the laser beam onto its corresponding pinhole, thus, effectively increasing laser intensity through pinholes placed in the pinhole array disk (Nipkow disk).
With the microlens, backscattering of laser light at the surface of the pinhole disk can be significantly reduced, thus, dramatically increasing the signal to noise ratio (S/N) of confocal images.
About 1,000 laser beams passing through each of the pinholes fill the aperture of the objective lens, and are then focused on the focal plane. Fluorescence generated from the specimen is captured by the objective lens and focused back onto the pinhole disk, transmitted through the same holes to eliminate out-of-focus signals, deflected by the dichroic mirror located between microlens array disk and the Nipkow disk to split fluorescence signal from reflected laser, passed through emission filter and then focused into the image plane in the eyepiece or camera.
The microlens array disk and the Nipkow disk are physically fixed to each other and are rotated to scan the entire field of view at high speeds, thus, making it possible to view confocal fluorescent images in real-time through the eyepiece of the CSU head.
As compared to conventional single point scanning, multi beam scanning by the CSU requires a significantly low level of light intensity per unit area, which results in significantly reduced photo bleaching and phototoxicity in live cells.
Spinning Disk Confocal
Microlens-enhanced Nipkow Disk Technology
Comparison of scanning method
Point Scanning
1 line scan time=1[ms]
1000 lines/image
Scan lines=1000 [lines]
1×1000=1000 [ms]
Disk Scanning by CSU
Rotation Speed=10000 [rpm]=41.7[rps]
30°Rotation/image
1÷( 41.7×30/360 )= 0.5 [ms]
February | 18,2022 |
Sales Release : Single CellomeTM System SS2000 We announce the sales release of Single Cellome System SS2000 on February 18th, 2022. Advantages
Release Date Please contact us for the details. |
February | 15,2022 |
Sales release : Confocal Quantitative Image Cytometer CellVoyager CQ1 new option and latest software were released
|
February | 15,2022 |
Sales release : CellPathfinder new product and the latest software were released
|
December | 1,2021 |
Yokogawa Develops Single Cellome System SS2000 for Intracellular Sampling <Cell sampling> <Features of the SS2000> The SS2000 will be released to the Japan, US and China market in January 2022, with release in other markets such as Europe to follow at a later date. Press Release: Yokogawa Develops Single Cellome System SS2000 for Intracellular Sampling |
November | 18,2021 |
Yokogawa Acquires Insilico Biotechnology, Developer of Innovative Bioprocess Digital Twin Technology Press Release:Yokogawa Acquires Insilico Biotechnology, Developer of Innovative Bioprocess Digital Twin Technology |
January | 8,2021 |
Sales release : Advanced Control Bioreactor System BR1000 was released. |
August | 20,2020 |
Discovering Potential Covid-19 Therapies using High Content Screening Date: Wednesday August 26th 2020 Abstract: |
June | 5,2020 |
Sales release : High-throughput Cytological Discovery System CV8000 : 20x water immersion lens option was released. |
March | 18,2020 |
Sales release : Single-cell Analysis Solution Single Cellome Unit SU10 |
January | 20,2020 |
Sales release : High Content Analysis Software CellPathfinder update and Deep learning option was released. Link to products High Content Analysis Software CellPathfinder |
January | 15,2020 |
Society for Laboratory Automation and Screening (SLAS) 2020 January 25-29, 2020 We will exhibit high content analysis system "CellVoyager CQ1". Link to products -Poster- 1207-C: |
Файлы
Visualizing the cell behavioral basis of epithelial morphogenesis and epithelial cancer progression
Faster, Deeper, and Clearer -in vivo molecular imaging technology-
Discovering the Basic Principles of Life through the Live Imaging of C. elegans
Closing in on Neuronal Circuit Dynamics through High-speed, fMCI.
New Era in Manmmalian Genetics Research: To utilize the same embryo after long-time 3D observation!
Getting Closer to “Plant Cell World”with High-speed Live Imaging and Image Information Processing.
Spinning Disk Confocal Microscopy for Quantitative Imaging and Multi-Point Fluorescence Fluctuation Spectroscopy.
On-site manipulation of protein activities: Understanding intricate cell signaling pathways.
Use of the spinning disk confocal at the Harvard Medical School microscopy core.
Comparison between CSU and conventional LSM in 4D movies.
To investigate interactive dynamics of the intracellular structures and organelles in the stomatal movement through live imaging technique, a CSU system was used to capture 3-dimensional images (XYZN) and time-laps images (XYT) of guard cells.
Cell stage categorized using FucciTime lapse imaging of Fucci-added Hela cells was conducted over 48 hrs at 1 hr intervals. Gating was performed based on the mean intensities of 488 nm and 561 nm for each cell. They were categorized into four stages, and the cell count for each was calculated.
The CV8000 nuclear translocation analysis software enables the analysis of changes in the localization of signal molecules that transfer between cytoplasm and nuclei, such as proteins. The following is an example of the translocation analysis of NFκB, a transcription factor.
The CQ1 confocal image acquisition mechanism with the distinctive CSU® unit has a function to sequentially acquire fine cell images along the Z-axis and capture information from the entire thickness of
cells which include heterogenic populations of various cell cycle stages. In addition, saved digital images can be useful for precise observation and analysis of spatial distribution of intracellular molecules.
The CQ1 capability to seamlessly analyze images and obtain data for things such as cell population statistics to individual cell morphology will provide benefits for both basic research and drug discovery
targetingM-cell cycle phase.
- Colony Formation
- Scratch Wound
- Cytotoxicity
- Neurite Outgrowth
- Co-culture Analysis
- Cell Tracking
Faster, Brighter, and More Versatile Confocal Scanner Unit
CV1000 clears the hurdle in Live Cell Imaging
All-in-one Live cell imaging solution
Welcome to The New World of High Content Analysis
High-throughput Cytological Discovery System
Cell clusters are directly measured with high-throughput 3D imaging Confocal Quantitative Image Cytometer
Wide and Clear
Confocal Scanner Unit
List of Selected Publications : CSU-W1
List of Selected Publications : CQ1
List of Selected Publications : CSU-X1
List of Selected Publications : CV8000, CV7000, CV6000
This "Tutorial" provides overview of this software, from installation through data analysis.
In this tutorial, a method for analyzing ramified structure, using CellPathfinder, for the analysis of the vascular endothelial cell angiogenesis function will be explained.
In this tutorial, a method for analyzing ramified structure, using CellPathfinder, for the analysis of the vascular endothelial cell angiogenesis function will be explained.
In this tutorial, spheroid diameter and cell (nuclei) count within the spheroid will be analyzed.
In this tutorial, we will learn how to perform time-lapse analysis of objects with little movement using CellPathfinder, through calcium imaging of iPS cell-derived cardiomyocytes.
In this tutorial, we will identify the cell cycles G1-phase, G2/M-phase, etc. using the intranuclear DNA content.
In this tutorial, image analysis of collapsing stress fibers will be performed, and concentration-dependence curves will be drawn for quantitative evaluation.
In this tutorial, we will observe the change in number and length of neurites due to nerve growth factor (NGF) stimulation in PC12 cells.
In this tutorial, intranuclear and intracytoplasmic NFκB will be measured and their ratios calculated, and a dose-response curve will be created.
In this tutorial, we will learn how to perform cell tracking with CellPathfinder through the analysis of test images.
In this tutorial, using images of zebrafish whose blood vessels are labeled with EGFP, tiling of the images and recognition of blood vessels within an arbitrary region will be explained.
Материалы
Брошюры
- CQ1 Bulletin (21.1 MB)
Видео
The Yokogawa business vision states that the company endeavors to achieve Net-zero emissions, ensure the Well-being of all, and make a transition to a Circular Economy by 2050.
Новости
-
Пресс-релиз 27 , 2014 Yokogawa Announces Release of CQ1 Confocal Quantitative Image Cytometer
- Accurate and efficient quantification of cell morphological features -
-
Пресс-релиз 5 , 2014 Yokogawa Technology Selected for the Japan Science and Technology Agency's Next-generation Technology Transfer Program
- A major step towards the development of A confocal image single-cell drug discovery support system -
-
Пресс-релиз 30 , 2015 Yokogawa Releases CellActivision Software for Analysis of Images of Label-free Live Cells
- For the observation of live cells in the preclinical and clinical stages of regenerative medicine and iPS cell-related research -
Хотите узнать больше о наших технологиях и решениях?
Контакты