YS1700 Boiler Control Overview

다운로드 (743 KB)

Overview

YS1700 Boiler Control Overview 1Automated control of industrial boilers is an excellent application for YS1700 microprocessor-based loop controllers. These instruments can be programmed to perform the operations of plant master, boiler master, fuel and air control with oxygen trim and drum level/feedwater control. Each of these control applications are discussed in this application note.

The YS1700 is a reliable and cost effective means of upgrading boiler controls and increasing boiler efficiency while lowering operating costs by implementing advanced control strategies. Although the functions of each controller discussed here differ, the YS1700 hardware platform is identical for each application.

Key features of the YS1700 include:

  • Dual PID loop capability
  • Built-in "Hard Manual" backup station
  • Two CPU design for reliability
  • LOOP, TREND & ALARM operator displays
  • Integral 24VDC transmitter power supply
  • Advanced self-tuning
  • RS485 & peer-to-peer communications options
  • Communication drivers for PLC's and SCADA/HMI software packages

Plant Master

Most industrial boilers operate on a header system. Steam is delivered to a header pipe by one or more boilers and is transferred from the header to the various process users. Pressure in the header is used as an indicator of the steam demand. A pressure transmitter is connected to the header and this signal is the process variable input to a YS1700 programmed as "Plant Master". This is a P+I controller that compares the pressure with an operator selected set point and computes a firing rate demand signal (output) to the combustion controls: {boilermaster(s) and the fuel/air controllers}.

Boilermaster

This controller accepts the firing rate demand signal from the Plant Master controller as the process variable. The output of boiler master provides the firing rate demand signal and operator applied bias to the fuel and air controllers for that specific boiler. This bias station allows the operator to select higher firing rates and therefore higher steam production from the more efficient boilers in a multiple unit configuration.

Additionally, discrete outputs from the fuel and air controllers provide mode status to the boilermaster controller. If the fuel or air controller is in MANUAL, the YS1700 programming logic can alert the boiler operator that the firing rate demand signal cannot be used in the combustion controllers.

A "Flame On" permissive from the burner management equipment alerts the boilermaster controller that the boiler can accept a firing rate demand signal and is not in a low fire, purge or off condition.

YS1700 Boiler Control Overview 2

Combustion Controls

The firing rate demand signal from the boilermaster controller(s) is used in the combustion control: fuel, air and flue gas percent oxygen. The YS1700 controller can be programmed to perform all these functions. In this text, the combustion control discussions will be limited to a single fuel with a parallel metered cross limited control configuration. The YS1700 controller can be programmed to select multiple fuels (e.g., oil or gas) or control a ratio of two combustibles.

The SAMA logic diagram below shows the interaction of the fuel and air controllers. The fuel and air flows are measured and compared to the firing rate demand signal. Low and high signal selectors are incorporated in the YS1700 programs to insure safe operation. The low selector in the fuel controller compares the firing rate demand signal and the air flow measurement and selects the lower signal as the set point. Inversely, the air controller compares the fuel flow measurement and firing rate demand signal selecting the higher as the air flow set point. Therefore, the fuel flow will not exceed the air flow. Function generators are applied to the outputs for characterization to the final control elements. A low limiter is configured into the air flow controller to prevent the air flow set point from being reduced less than 25% of full range. This minimum setting is required by NFPA code and insures safe operation during transmitter outage.

Discrete inputs and outputs are used for tracking the auto/manual status of the air controller. The fuel controller is forced to MANUAL if the air controller is placed in MANUAL. The fuel cannot be placed into the automatic mode until the air controller is returned to AUTO. This action is required to insure a safe and proper air/fuel ratio.

An auto/manual station can be used to generate a fuel/air ratio. For better combustion control and boiler efficiency, a flue gas percent oxygen analyzer and YS1700 controller can be incorporated into the air flow control strategy. The firing rate demand signal is modified by a function generator to calculate a load index. An operator applied bias can be applied to the index and this is the set point to the oxygen trim controller. The P+I output is adjusted for gain and bias (y=mx+b) and applied to the air flow measurement signal. High and low output limiters are used in the event of analyzer outage.

The YS1700 can be programmed to operate as a dual loop P+I+D controller. Therefore, the combustion air and percent oxygen controls can reside in one instrument. The YS1700 can display the measured variables (air & percent oxygen) on two different screens. Operator interface is simple and easy-to-read.

Feedwater Control

YS1700 Boiler Control Overview 3

The boiler feedwater controller is used to maintain the water in the steam drum at a desired set point. The intent is to replace each pound of steam taken from the steam drum with a pound of makeup water. A high drum level may allow water droplets to be carried over into the steam header and damage process equipment. A low level can cause damage to exposed tube surfaces.

A phenomenon exhibited in the steam drum is swelling and shrinkage. This is caused by the bubbles in the boiler tubes and the drum expanding and contracting. As the demand for steam is increased, the header pressure decreases and the master pressure controller increases the firing rate of the boiler(s). The associated decrease in drum pressure and higher firing rate causes the water bubbles to expand and the drum level increases. Conversely as the steam demand decreases, the header pressure increases and firing rate declines, causing collapsing bubbles and a lowering of the steam drum level. This action creates an opposite reaction in the feedwater controller. More feedwater is needed for higher steam flow, but as the level swells, the feedwater controller reduces the output to the valve. Using a drum level pressure transmitter and compensating for the change in drum pressure, the feedwater controller is not adversely affected. The drawing at the right shows a drum pressure measurement being applied through a function generator to the level input.

There are three types of boiler feedwater control configurations that are commonly supplied: single element (drum level only), two element (level & steam flow) and three element (level, steam & feedwater).

Single element control is commonly used in small boilers that are based loaded, i.e., little variation in steam demand. Changes in load are not incorporated into the control strategy.

Two element control uses a steam flow measurement as a feedforward element to change position in the feedwater valve. Changes in steam demand are sensed and adjustments to the valve are made. Varying feedwater pressure can change the flow rate and drum level. Fluctuating pressure is common in multi-boiler feedwater systems.

The SAMA diagram below shows a three element drum level control with pressure compensated drum level. The YS1700 controller is programmed in a cascade configuration, where the output of the drum level controller is linked to the remote set point of the feedwater flow controller. The steam flow measurement is applied to the output of the level controller to adjust the remote set point to the feedwater control proportional to varying steam demands. The secondary control is the faster reacting feedwater flow controller. Three element control is common on large boilers with varying load demands. This can be programmed into one YS1700, as a single station cascade controller with feedforward element and pressure compensated drum level.

Peer-to-Peer Communication

YS1700 controllers can be optionally provided with peer-to-peer communications. This feature permits data from one controller to be sent to another digitally over a single pair of twisted wires. Any controller parameter can be shared. Up to sixteen (16) controllers can be linked on this data network with custom configuration.

SCADA/HMI

Many boiler locations combine the control power and reliability of panel mounted controllers by linking their YS1700 controllers with popular SCADA/HMI software packages. Running such software in a personal computer provides advanced trending, alarming, operator graphics and other features while maintaining the boiler control functions in the YS1700's. Such a system provides features and functions similar to a Distributed Control System without the high price tag!

When using the RS485 communication option, sixteen (16) YS1700's can be linked to each communication port of the SCADA/HMI computer. The peer-to-peer option allows sixteen (16) controllers to "talk" with each other as the SCADA/HMI host computer accesses the network. The peer-to-peer option runs approximately eight times faster than the RS485 option (78,000bps vs 9600bps). Custom applications with up to 63 YS1700 controllers linked to a single PC communications port are possible when using the YS- Net peer-to-peer/PC network. Either YS1700 digital communication card discussed here can be provided at the initial purchase of the controllers or easily retrofitted in the field.

Summary

YS1700 - Boiler Control Solution
YS1700 - Boiler Control Solution

Using YS1700 loop controllers is an answer to upgrading aging or cumbersome boiler controls. Increased boiler efficiency and reduced operating costs can be realized. The programmability allows them to be used in a variety of applications. Discussions here have been limited to the most common boiler control applications. However, the YS1700 can be used for deaerator control, steam drum b treatment and a variety of auxiliary control applications in the industrial boiler domain.lowdown, condensate return, water treatment and a variety of auxiliary control applications in the industrial boiler domain.

Related Technotes

  • CP-A-04 - RS485 Communications/ Graphical User Interface Packages
  • CP-A-08 - YS1700 Peer-to-Peer Communications
  • CP-A-11 - Boiler Feedwater Control
  • CP-A-12 - Boiler Combustion Control

 

YS1700 Dual Loop Programmmable Controller

YS1700 Dual Loop Programmmable Controller

업종

  • 벌크화학

    석유 화학 제품, 무기물 또는 중간체를 생산하든 관계없이 화학 회사는 안전하고 호환되는 작업을 유지하면서 적시에 효율적인 방법으로 제품을 제공하는 비용과 마진 압박에 시달리고 있습니다. 또한 화학 회사들은 공급 원료 및 에너지 가격의 변동에 적응하고 가장 수익성 높은 제품 혼합을 시장에 제공해야 합니다.

    Yokogawa는 벌크 화학 시장의 자동화 요구 사항을 세계적으로 지원해 왔으며 이 시장에서 인정받는 선두 주자입니다. Yokogawa는 제품, 솔루션 및 업계 전문 기술을 통해 시장 및 생산 요구 사항을 이해하고 플랜트의 수명주기를 통해 안정적이고 비용 효율적인 솔루션을 제공하기 위해 협력합니다.

    See More
  • 전력

    1970년대 중반, Yokogawa는 EBS 전기 제어 시스템 (EBS Electric Control System)의 출시와 함께 전력 사업에 진출했습니다. 그 이후로 Yokogawa는 전 세계 고객에게 최상의 서비스와 솔루션을 제공하기 위한 기술과 역량의 개발을 꾸준히 지속해 왔습니다.

    Yokogawa는 역동적인 글로벌 전력 시장에서 더욱 적극적인 역할을 수행하기 위해 글로벌 전력 솔루션 네트워크를 운영했습니다. 이로 인해 Yokogawa 내에서 보다 긴밀한 팀워크가 가능해져서 글로벌 리소스와 업계 노하우를 하나로 모았습니다. Yokogawa의 전력 산업 전문가들은 각 고객에게 정교한 요구 사항에 가장 적합한 솔루션을 제공하기 위해 협력합니다.

    See More
  • 정수 및 하수 처리

    Yokogawa는 보다 효율적인 사회를 만들기 위하여 에너지 최적화 기술 개발, 온실가스 감축, 오염 물질로부터 환경을 보호하는 견고한 제품 제작 등을 통해 지속 가능한 수자원 생산을 위한 제어 솔루션을 제공하고 있습니다. Yokogawa의 첨단 기술과 폭넓은 애플리케이션 노하우를 통해 고객과 협력하여 사업을 활성화하고 플랜트 수명주기 전반에 걸쳐 높은 가치를 제공할 수 있는 지속 가능한 솔루션을 제공합니다. 당사의 기술과 제품은 플랜트의 성능을 향상시키고 오늘날의 수자원 시장에서 경쟁적으로 운영할 수 있도록 보장하며 운영비를 절감합니다. Yokogawa는 지자체 및 공업용수 처리 시장에서 광범위한 수처리 응용 분야를 지원합니다.

    See More

Related Products & Solutions

  • YS1310

    YS1310 지시 경보계는 2 입력의 지시 경보계입니다. 2 루프를 동시 표시에 표시할 수 있습니다. 2 입력 각각에 대해 상한 경보, 하한 경보, 위 상한 경보, 아래 하한 경보가 가능하며 총 6개의 접점에서 임의의 경보의 AND 접속 또는 OR 접속을 출력 할 수 있습니다.

    See More
  • YS1350/YS1360

    YS1350은 수동으로 SP 신호를 컨트롤러 등에 출력 할 수있는 수동 설정기입니다. YS1360은 조작기에 MV 신호를 수동으로 출력 할 수있는 수동 설정기입니다.

    See More
  • YS1500

    YS1500 조절계는 PID 제어에 필요한 기본적인 제어 기능을 미리 내장하고 있어 사용자의 목적에 따라 기능을 선택 설정할 수 있는 단일 루프 컨트롤러입니다.

    See More
  • YS1700

    YS1700 프로그램 조절계는 사용자 프로그램을 통해 다양한 어플리케이션을 지원하는 단일 루프 컨트롤러입니다. Yokogawa 독점 기술의 높은 신뢰성과 사용의 용이성 및 확장성을 갖추고 있습니다.

    See More
  • 싱글 루프 조절계

    싱글 루프 조절계는 센서로부터 온도, 유량, 압력 및 기타 유형의 측정값을 수신하고 밸브와 같은 제어 요소에 해당 지침을 보내 원하는 값으로 제어합니다.

    See More

Top